# Natural Language Toolkit: Chunked Corpus Reader # # Copyright (C) 2001-2012 NLTK Project # Author: Steven Bird # Edward Loper # URL: # For license information, see LICENSE.TXT """ A reader for corpora that contain chunked (and optionally tagged) documents. """ import os.path, codecs import nltk from nltk.corpus.reader.bracket_parse import BracketParseCorpusReader from nltk.tree import Tree from nltk.tokenize import * from nltk.chunk import tagstr2tree from util import * from api import * class ChunkedCorpusReader(CorpusReader): """ Reader for chunked (and optionally tagged) corpora. Paragraphs are split using a block reader. They are then tokenized into sentences using a sentence tokenizer. Finally, these sentences are parsed into chunk trees using a string-to-chunktree conversion function. Each of these steps can be performed using a default function or a custom function. By default, paragraphs are split on blank lines; sentences are listed one per line; and sentences are parsed into chunk trees using ``nltk.chunk.tagstr2tree``. """ def __init__(self, root, fileids, extension='', str2chunktree=tagstr2tree, sent_tokenizer=RegexpTokenizer('\n', gaps=True), para_block_reader=read_blankline_block, encoding=None): """ :param root: The root directory for this corpus. :param fileids: A list or regexp specifying the fileids in this corpus. """ CorpusReader.__init__(self, root, fileids, encoding) self._cv_args = (str2chunktree, sent_tokenizer, para_block_reader) """Arguments for corpus views generated by this corpus: a tuple (str2chunktree, sent_tokenizer, para_block_tokenizer)""" def raw(self, fileids=None): """ :return: the given file(s) as a single string. :rtype: str """ if fileids is None: fileids = self._fileids elif isinstance(fileids, basestring): fileids = [fileids] return concat([self.open(f).read() for f in fileids]) def words(self, fileids=None): """ :return: the given file(s) as a list of words and punctuation symbols. :rtype: list(str) """ return concat([ChunkedCorpusView(f, enc, 0, 0, 0, 0, *self._cv_args) for (f, enc) in self.abspaths(fileids, True)]) def sents(self, fileids=None): """ :return: the given file(s) as a list of sentences or utterances, each encoded as a list of word strings. :rtype: list(list(str)) """ return concat([ChunkedCorpusView(f, enc, 0, 1, 0, 0, *self._cv_args) for (f, enc) in self.abspaths(fileids, True)]) def paras(self, fileids=None): """ :return: the given file(s) as a list of paragraphs, each encoded as a list of sentences, which are in turn encoded as lists of word strings. :rtype: list(list(list(str))) """ return concat([ChunkedCorpusView(f, enc, 0, 1, 1, 0, *self._cv_args) for (f, enc) in self.abspaths(fileids, True)]) def tagged_words(self, fileids=None): """ :return: the given file(s) as a list of tagged words and punctuation symbols, encoded as tuples ``(word,tag)``. :rtype: list(tuple(str,str)) """ return concat([ChunkedCorpusView(f, enc, 1, 0, 0, 0, *self._cv_args) for (f, enc) in self.abspaths(fileids, True)]) def tagged_sents(self, fileids=None): """ :return: the given file(s) as a list of sentences, each encoded as a list of ``(word,tag)`` tuples. :rtype: list(list(tuple(str,str))) """ return concat([ChunkedCorpusView(f, enc, 1, 1, 0, 0, *self._cv_args) for (f, enc) in self.abspaths(fileids, True)]) def tagged_paras(self, fileids=None): """ :return: the given file(s) as a list of paragraphs, each encoded as a list of sentences, which are in turn encoded as lists of ``(word,tag)`` tuples. :rtype: list(list(list(tuple(str,str)))) """ return concat([ChunkedCorpusView(f, enc, 1, 1, 1, 0, *self._cv_args) for (f, enc) in self.abspaths(fileids, True)]) def chunked_words(self, fileids=None): """ :return: the given file(s) as a list of tagged words and chunks. Words are encoded as ``(word, tag)`` tuples (if the corpus has tags) or word strings (if the corpus has no tags). Chunks are encoded as depth-one trees over ``(word,tag)`` tuples or word strings. :rtype: list(tuple(str,str) and Tree) """ return concat([ChunkedCorpusView(f, enc, 1, 0, 0, 1, *self._cv_args) for (f, enc) in self.abspaths(fileids, True)]) def chunked_sents(self, fileids=None): """ :return: the given file(s) as a list of sentences, each encoded as a shallow Tree. The leaves of these trees are encoded as ``(word, tag)`` tuples (if the corpus has tags) or word strings (if the corpus has no tags). :rtype: list(Tree) """ return concat([ChunkedCorpusView(f, enc, 1, 1, 0, 1, *self._cv_args) for (f, enc) in self.abspaths(fileids, True)]) def chunked_paras(self, fileids=None): """ :return: the given file(s) as a list of paragraphs, each encoded as a list of sentences, which are in turn encoded as a shallow Tree. The leaves of these trees are encoded as ``(word, tag)`` tuples (if the corpus has tags) or word strings (if the corpus has no tags). :rtype: list(list(Tree)) """ return concat([ChunkedCorpusView(f, enc, 1, 1, 1, 1, *self._cv_args) for (f, enc) in self.abspaths(fileids, True)]) def _read_block(self, stream): return [tagstr2tree(t) for t in read_blankline_block(stream)] class ChunkedCorpusView(StreamBackedCorpusView): def __init__(self, fileid, encoding, tagged, group_by_sent, group_by_para, chunked, str2chunktree, sent_tokenizer, para_block_reader): StreamBackedCorpusView.__init__(self, fileid, encoding=encoding) self._tagged = tagged self._group_by_sent = group_by_sent self._group_by_para = group_by_para self._chunked = chunked self._str2chunktree = str2chunktree self._sent_tokenizer = sent_tokenizer self._para_block_reader = para_block_reader def read_block(self, stream): block = [] for para_str in self._para_block_reader(stream): para = [] for sent_str in self._sent_tokenizer.tokenize(para_str): sent = self._str2chunktree(sent_str) # If requested, throw away the tags. if not self._tagged: sent = self._untag(sent) # If requested, throw away the chunks. if not self._chunked: sent = sent.leaves() # Add the sentence to `para`. if self._group_by_sent: para.append(sent) else: para.extend(sent) # Add the paragraph to `block`. if self._group_by_para: block.append(para) else: block.extend(para) # Return the block return block def _untag(self, tree): for i, child in enumerate(tree): if isinstance(child, Tree): self._untag(child) elif isinstance(child, tuple): tree[i] = child[0] else: raise ValueError('expected child to be Tree or tuple') return tree