Towards Universal Semantic Tagginge

Lasha Abzianidze (joint work with Johan Bos) 29.05.2018

From *lexical* semantics to phrasal semantics

Semantic lexicon is usually large

From *lexical* semantics to phrasal semantics

Semantic lexicon is usually large

Which lexical semantics to assign to word tokens?

From *lexical* semantics to phrasal semantics

Semantic lexicon is usually large

Which lexical semantics to assign to word tokens?

- 07/1937 I have gone to the cinema
- <u>00/1564</u> I have a big dog
- <u>00/2206</u> I have to warn him

From *lexical* semantics to phrasal semantics

Semantic lexicon is usually large

Which lexical semantics to assign to word tokens?

- 07/1937 I have gone to the cinema
- <u>00/1564</u> I have a big dog
- <u>00/2206</u> I have to warn him

Can POS tags help?

From *lexical* semantics to phrasal semantics

Semantic lexicon is usually large

Which lexical semantics to assign to word tokens?

- 07/1937 I have gone to the cinema
- <u>00/1564</u> I have a big dog
- <u>00/2206</u> I have to warn him

Can POS tags help? NO as all the three gets VBP

More examples

- He himself^{PRP} tried it, Tom cut himself^{PRP} while shaving
- and^{CC}, or^{CC}, but^{CC}
- \circ ... **to^{TO}** write ..., ... **to^{TO}** cinema ...
- does not like any^{DT} X. Give me any^{DT} X
- a(n)/every/no/the/some/each/that/these/(n)either...^{DT}
- ill^{JJ} / skillful^{JJ} / fake^{JJ} professor
- Google, New York; Ann, Bill and Mary; Ann, a director,...

Outline

- Groningen/Parallel Meaning bank
- UNIversal SEmantic Tagset
- Results & Challenges
- Conclusion

Formal compositional semantics in Parallel Meaning Bank

- Heavy lexical units: DRSs
- Few combining rules: Rules of CCG
- λ -calculus for computation: λ -DRS

e1 t1 t2 male.n.02(x1)leave.v.01(e1) Time(e1, t1)Theme(e1, x1) time.n.08(t1) t1 X t2 $t1 \prec now$ measure.n.02(t2) t2 X now Unit(t2, day) Theme(t2, 3)

Formal compositional semantics in Parallel Meaning Bank

- Heavy lexical units: DRSs
- Few combining rules: Rules of CCG
- \circ λ-calculus for computation: λ-DRS


```
e1 t1 t2
male.n.02(x1)
leave.v.01(e1)
  Time(e1, t1)
  Theme(e1, x1)
time.n.08(t1)
  t1 X t2
  t1 \prec now
measure.n.02(t2)
  t2 X now
  Unit(t2, day)
  Theme(t2, 3)
```

Formal compositional semantics in Parallel Meaning Bank

- Heavy lexical units: DRSs
- Few combining rules: Rules of CCG
- \circ λ-calculus for computation: λ-DRS

male.n.02(x1) leave.v.01(e1) Time(e1, t1) Theme(e1, x1) time.n.08(t1)

Compositionality

Projection

Time(v5, t1)

time(t1) t1 < now

(PAT)

x1 e1 t1 t2 male.n.02(x1)leave.v.01(e1)Time(e1, t1)Theme(e1, x1) time.n.08(t1) t1 X t2 $t1 \prec now$ measure.n.02(t2) t2 X now Unit(t2, day) Theme(t2, 3)

ago λv1.λv2.λv3	.λν4. ((ν2 @ v3) ĝ) λν5. (v1 @ λν6. (t ??? ^{ti}	1 : (v me(t1) t1 x v6 v6 x now Time(v5, t1)	4 @ v5))))
x1 male(x1) (v1 @ x1))	days λv1. Peacur(v1) Unit(v1. day)	three λv1.λv2.(?? Theme		►
	left λv1.λv2. (v1 @ λv3. (e1 t1 : (v2 @ e1 Pave(e1) Theme(e1, v3)			
He MU1. (time(t1) t1 ~ now		o Av1.Av2. (x1

Goal

x1 e1 t1 t2 male.n.02(x1)leave.v.01(e1) Time(e1, t1)Theme(e1, x1) time.n.08(t1) t1 X t2 $t1 \prec now$ measure.n.02(t2) t2 X now Unit(t2, day) Theme $(t_2, 3)$

GMB: Before UNISET

GMB: Before UNISET

GMB: Before UNISET

POS tags are not enough

POS tags are not enough

left λv1.λv2. (v1 @ λv3. (e1 t1 : (v2 @ e1))) lea me(e1, t1) Theme(e1, v3) time(t1) t1 = now

POS tags are not enough

λν1.λν2. (v1 @ λν3. (e1 t1 :(v2@e1))) Theme(e1, v3). time(t1) t1 - now

Something else is needed

- POS tags lack fine-grained semantic information
- Relying on lemmas \rightarrow not language neutral
- Relying on CCG categories \rightarrow

framework/language dependent

 Sometimes even a CCG category, lemma, and a POS-tag do not suffice: and, any

SEM tags for semantics

- Schema of lexical semantics is determined by a sem-tag and a syntactic category (SEM, CAT)
- Less sensitive to syntax (vs POS tags)
- Semantic info complements thematic roles, syntax and *lemma*.
- Generalizes over POS tags and Named Entity classes

UNIvesral SEemantic Tagset

- 73 sem-tags divided into 13 classes
- Under development (v0.7)
- Designed in a data-driven fashion (EN, NL, IT, DE)
| Attribute | QUC Concrete
quantity
QUV Vague
quantity | two, six million, twice, 5
millions, many, enough | | | |
|-----------|---|--|--|--|--|
| | COL Colour | red, crimson, light_blue | | | |
| | Ist Intersective | open, vegetarian, quickly | | | |
| | SST Subsective | skillful surgeon, tall kid | | | |
| | | former, fake | | | |
| 1 | PRI Privative | former, fake | | | |
| _ | PRI Privative
DEG Degree | former, fake
2 meters tall, 20 years old | | | |
| - | | · · · · | | | |
| - | DEG Degree | 2 meters tall, 20 years old | | | |

PRO Anaphoric & deictic pronoun

DEF Definite

HAS Possessive pro.

EMP Emphasizing pro.

he, she, I, him the, lo^{IT}, der^{DE} my, her blamed herself, each other left himself

he, she, I, him the, Io^{IT}, der^{DE} my, her blamed herself, each other left himself

iS skiing, dO ski, has skied, now Was baked, had gone, did go will, shall has been being treated, aan_het^{NL} has been going/done

Logical	ALT	Alternatives & repetitions	another, different, again			
	XCL	Exclusive	only, just			
	NIL	Empty semantics	to, .,			
Ľ	DIS	Disjunction & existential quantif.	a, some, any, or			
	IMP	Implication	if, when, unless			
	AND	Conjunction & universal quantif.	every, and, who,	, any	/	
not, no, neither, without must, should, have to					NOT Negation	
mi	ght, d		ps, alleged, can	Modality	POS Possibility	

	DAT Full date	27.04.2017, 27/04/17
tity	Dom Day of Month	27th December
Temporal Entity	Yoc Year of century	2017
pora	Dow Day of week	Thursday
Tem	Month of year	April
T	DEC Decade	80s, 1990s
	CLO Clocktime	8:45_pm, 10_o'clock, noon

that, while, because so, ;, and which, but, yet

here, this, above just, later, tomorrow latter, former, above

	PER Person	Axl Rose, Sherlock Holmes		
	GPE Geo-political entity	Paris, Japan		
	GPO Geo-political origin	Parisian, French		
	Geographical location	Alps, Nile		
ity	ORG Organization	IKEA, EU		
Named Entity	ART Artifact	iOS_7		
	HAP Happening	Eurovision_2017		
Na	Unit of measurement	meter, \$, %, degree Celsius		
	CTC Contact info	112, info@mail.com		
		http://pmb.let.rug.nl		
	Literal use of names	his name is John		
	NTH Other names	table 1a, equation (1)		

Tagging & Semantics

Formal compositional semantics are less favoured:

- Semantics problems
- Difficult to scale up

Make formal semantics study modular

Tagging & Semantics

Formal compositional semantics are less favoured:

- Semantics problems
- Difficult to scale up

Make formal semantics study modular

NLP community loves tagging/labeling tasks

- Conceptually a simple task
- Create an annotated data
- Employ ML techniques for learning

Data & Results

- Gold EN documents (34.7K)
- Silver EN documents (1.6M)

Universal Semantic Tags

version	# en	# de	# it	<mark># n</mark> l	silver inc.	release date	download
0.1.0	5438	0	0	0	yes	01-05-2018	19 MB ZIP file

- Baseline (UniGram) ~82%
- Stanford tagger ~88.8%
- NN tagger (AUX UPOS) ~92.7% (M. Abdou)

Challenges

- Account for wide-coverage compositional semantics
- Keep UNISET independent from CCG
- Prevent the number of sem-tags from increasing

Conclusion

- Facilitates determining lexical semantics
- Contributes to cross-lingual applications
- Useful for other NLP applications
- Useful for other semantic parsers or RTE systems: (ccg2lambda, LangPro, UDepLambda,...)

Future work

- Cover more semantic phenomena (data-driven)
- Measure an inter-annotator agreement
- Reorganize tagset to simplify learning

