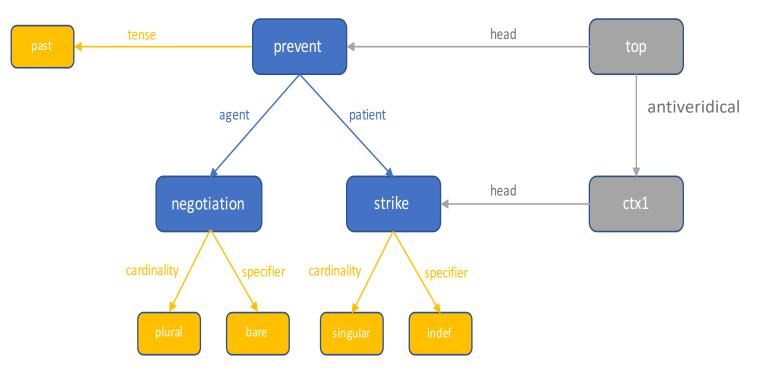
# Description Logics for Natural Language Inference

Dick Crouch, Amazon Search

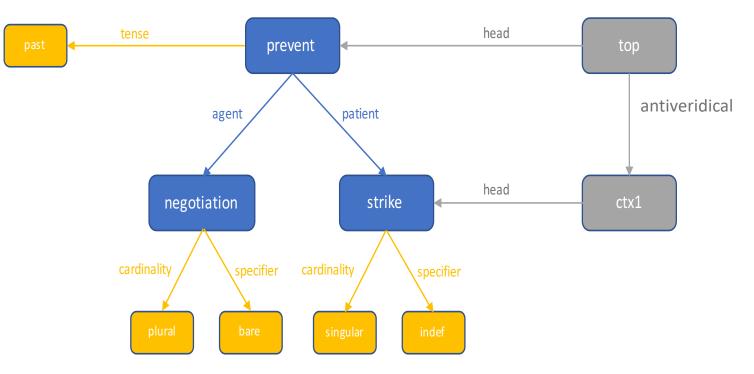
Cross Framework Meaning Representations, Oslo, May 2018


#### Overview

- AKR & GKR: named graphs
  - Concepts and contexts
  - Description logics for concepts
- Inference
  - World knowledge, robustness, ambiguity
- Dirty laundry

# Knowledge Graphs and Semantics

- Knowledge graphs are popular for the semantic web
  - Graphs of RDF subject-predicate-object triples
  - They have a graph semantics in addition to a model-theoretic one
    - Knowledge can be viewed <u>as</u> a graph and not just represented by one
    - Focus on efficient inference including graph algorithms
- You might think they would be ideal for NL semantics, but:
  - They are intended to represent collections of positive facts / assertions
  - NL semantics must also handle negative, disjunctive and hypothetical assertions.
    - RDF doesn't do negation
- Named graphs extend RDF in a simple way that is better for NL
  - Goal: semantic objects <u>are</u> graphs, not just represented by them

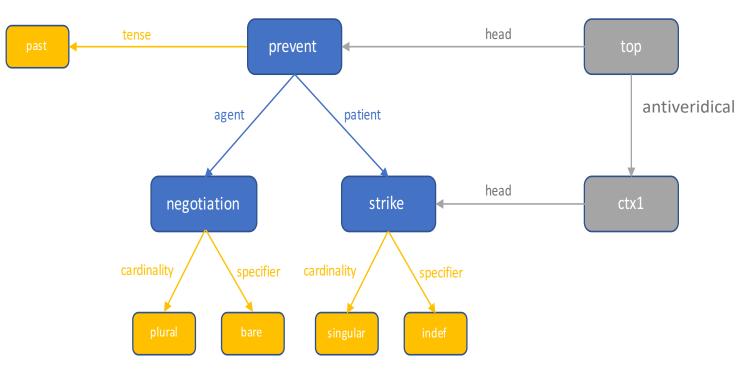

#### AKR: Bobrow et al



#### GKR: Kalouli 2018, Boston et al 2018, Shen et al 2018

- Layered graph representation
  - Blue: conceptual / predicate argument
  - Gray: contextual / boolean
  - Yellow: attributes / properties
  - Coreference links
  - World knowledge
  - Temporal relations
  - Task constraints
  - ...

### AKR: Bobrow et al




#### GKR: Kalouli 2018, Boston et al 2018, Shen et al 2018

- Layered graph representation
  - Blue: conceptual / predicate argument
  - Gray: contextual / boolean
  - Yellow: attributes / properties
  - Coreference links
  - World knowledge
  - Temporal relations
  - Task constraints
  - ...

Conceptual level: ∃p, n, s. prevent(p) & negotiations(n) & strike(s) & arg0(p, n) & arg1(p, s)

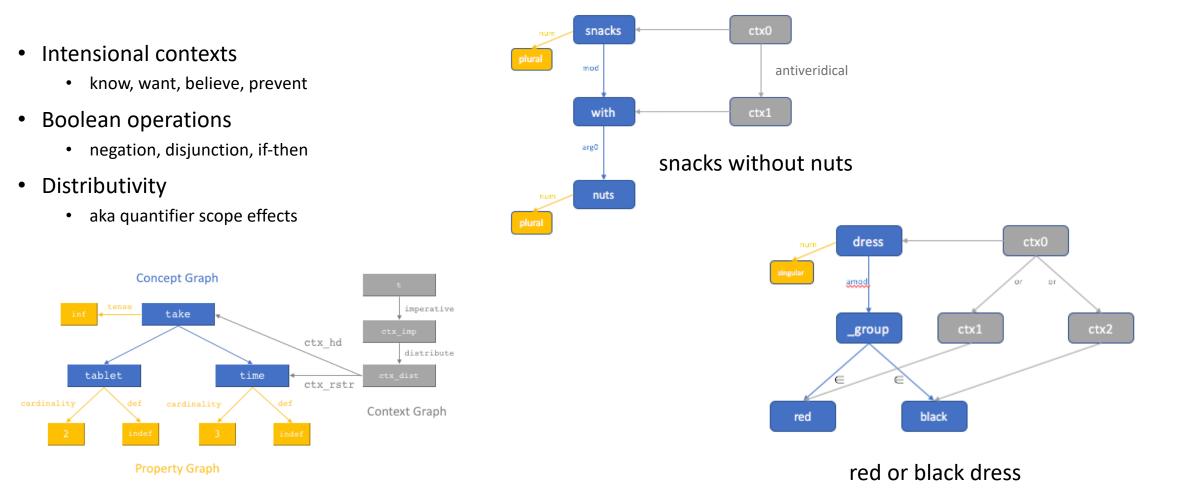
#### AKR: Bobrow et al



#### GKR: Kalouli 2018, Boston et al 2018, Shen et al 2018

- Layered graph representation
  - Blue: conceptual / predicate argument
  - Gray: contextual / boolean
  - Yellow: attributes / properties
  - Coreference links
  - World knowledge
  - Temporal relations
  - Task constraints
  - ...

Conceptual level:


∃p, n, s. prevent(p) & negotiations(n) & strike(s) & arg0(p, n) & arg1(p, s)

 $\exists p, n, s. p \sqsubseteq prevent \& n \sqsubseteq negotiations \& s \sqsubseteq strike \& restr(p, n, arg0) \& restr(p, s, arg1)$ 

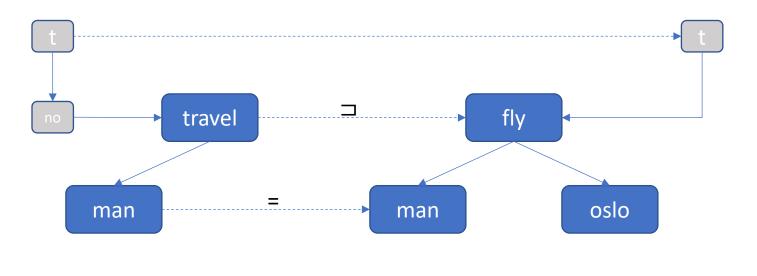
#### Incompleteness vs incorrectness

- Terms in concept layer denote concepts, not individuals:
  - ∃p, n, s. p⊑ prevent & n⊑ negotiations & s⊑ strike & restr(p, n, arg0) & restr(p, s, arg1)
- Concept layer provides incomplete information, not incorrect
  - Says nothing about the existence of individuals satisfying those concepts
  - The contextual layer is required to assert existential commitment
- Conceptual layer alone
  - Supports semantic similarity (sub-concept, super-concept)
  - Similarity can be further refined by attribute layer (cardinality, definiteness)
- Conceptual and contextual layer
  - Supports entailment

# What goes into the context layer?



Take two tablets three times


#### What are contexts?

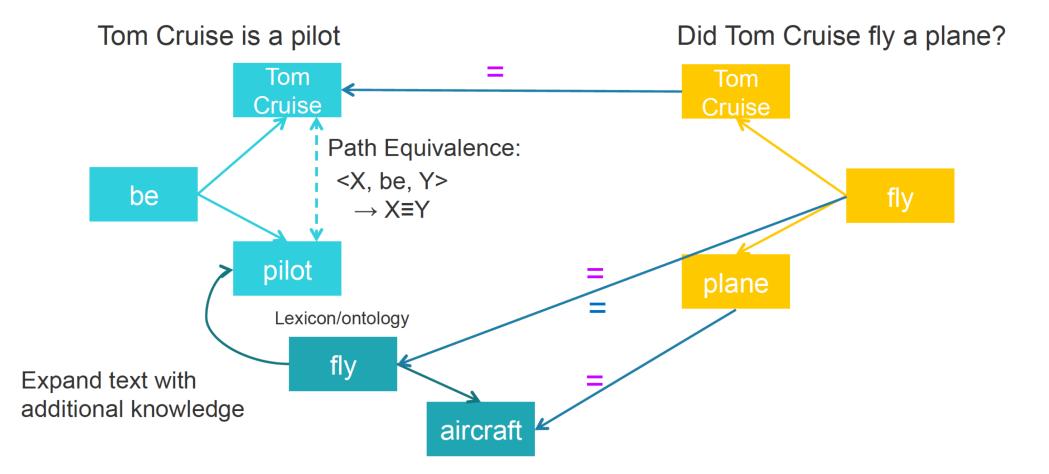
- Model Theoretically:
  - Possible worlds, contexts of evaluation, ...
- Graphically
  - Named sub-graphs of the concept graph
- Named graphs (Carroll et al 2005)
  - Start with (conjunctive) graphs of RDF subject-predicate-object triples
    - Each triple is a proposition/assertion
  - Allow sub-graphs to be labeled/named
  - Allow graph names to occur as subjects or objects
  - Graph semantics is a simple extension of RDF graph semantics
    - Though named graphs are not asserted

### What are concepts?

- Lexical concepts and roles taken as primitive
- Combine to form complex concepts with a description logic  $\mathcal{FL}_0: C, D \Rightarrow A \mid C \sqcap D \mid \forall R.C$ 
  - Bite □ ∀subj.Dog □ ∀obj.Man: the concept of bitings of men by dogs
  - Simple, polynomial subsumption algorithms  $\mathcal{FLN}_0$ : adds cardinality restrictions
- Since negation, disjunction etc handled by contexts, don't need the full power of OWL (concept union, complement, existential role restriction)

### GKR inference

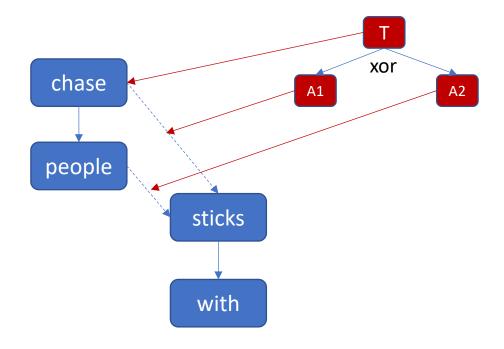



No man traveled

A man flew to Oslo

Entailment and Contradiction Detection (ECD): Crouch & King 2006

- 1. travel.restr(man,arg0) ⊐
  fly.restr(man,arg0).restr(oslo,loc)
- 2. travel instantiated in context no
- 3. travel uninstantiated in context t
- 4. fly instantiated in context t
- 5. Hence contradiction


# Adding (lexical) world knowledge



#### Robust Inference

- ECD as one feature in an ensemble (Nuance NLIE)
- Cosine distance of vectors for concept alignment
- Adding plausible lexical entailments (under hypothetical contexts)
- Abductive concept subsumption
  - If  $C_0 \sqsupset C_0'$  and  $C_1 \sqsupset C_1'$ , then assume  $C_0.r_1.C_1 \sqsupset C_0'.r_2.....r_n.C_1'$ 
    - Unless reason to suppose otherwise, assume all roles are the same.
  - Collect paths equivalences from training data:  $r_1 \equiv r_2 \dots r_n$
  - Learn path plausibilities (weights)

# Packing Ambiguity



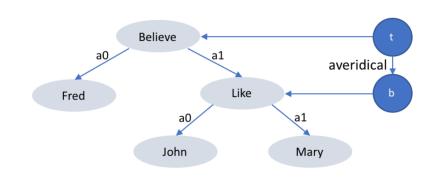
Ambiguity contexts name different sub-graphs:

- T: chase.obj.people sticks.prep.with
- A1: chase.mod.sticks
- A2: people.mod.sticks

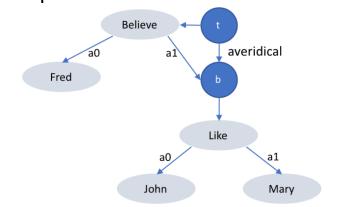
Chase people with sticks

### Claims

- You can go a long way with a very simple description logic:
  - $\mathcal{FL}_0$ : conjunction and role restriction of concepts.
  - $\mathcal{FLN}_0$ : plus cardinality restrictions
- But you need to sharply separate <u>conceptual</u> predicate-argument structure from Boolean and hypothetical <u>contextual</u> structure.
- RDF named graphs provide a way of making this separation clear.
- Named graphs also facilitate:
  - Packing of ambiguity
  - Layering in additional levels of meaning (coreference, world knowledge)
- $\mathcal{FLN}_0$  conceptual structure *may* be a good match for distributional vector spaces

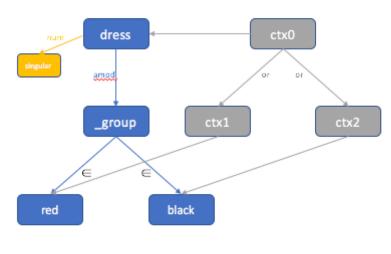

# Dirty Laundry

• ...


- Can we avoid contexts as role arguments?
- Do conjunction and disjunction require concept union?
- Do roles always restrict contexts?

#### Contexts as Role Arguments

GKR: Contexts cannot be role arguments




Named graphs: allows intermingling of concepts & contexts



- Keeping contexts out of roles stays in  $\mathcal{FL}_0$  territory But:
- people with money vs people with no money
  - Surely these express different concepts?
- Solution? Determiner *no* adds a cardinality restriction to the concept graph
- But what about relative clauses? *People that do not have money*

# Conjunction, Disjunction, Concept Union



red or black dress

What is the \_group concept? Red ⊔ Black ?

- Why is concept union an issue?
- Gardenfors: connectedness and convexity of natural concepts
  - No holes, breaks or gerrymandering
- Concept intersection and role restriction (probably) preserve connectedness and convexity
- Concept union almost certainly doesn't preserve it

### Does role restriction always restrict?

- Privative adjectives *fake diamond* 
  - Partee: fake diamonds are diamonds in an extended sense
- A man flew to Oslo  $\rightarrow$  A man traveled
  - *Travel:* move to a destination
  - *Fly:* move (through the air)
  - ECD alignment assumed Fly ⊏ Travel
    - Need to rethink lexical concept alignment