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Hugging Face: Democratizing NLP

Core research goals:
[ For most: intelligence as making sense of data
A Forus: intelligence as creativity, interaction, adaptability

Started with Conversational Al (text/image/sound interaction):
d  Neural Language Generation in a Conversational Al game
A Product used by more than 3M users, 600M+ messages exchanged

Develop & open-source tools for Transfer Learning in NLP
We want to accelerate, catalyse and democratize research-level work in

Natural Language Understanding as well as Natural Language Generation



Democratizing NLP - sharing knowledge, code, data

1 Knowledge sharing

O NAACL 2019 / EMNLP 2020 Tutorial (Transfer Learning / Neural Lang Generation)
O  Workshop NeuralGen 2019 (Language Generation with Neural Networks)

O  Workshop SustaiNLP 2020 (Environmental/computational friendly NLP)

O EurNLP Summit 2020 (European NLP summit in Paris in Nov. 2020)

1 Code & model sharing: Open-sourcing the “right way”

A Two extremes: 1000—commands research-code < 1-command production code
To target the widest community our goal is to be right in the middle
[ Breaking barriers
d  Researchers / Practitioners
3 PyTorch / TensorFlow
A Speeding up and fueling research in Natural Language Processing
A Make people stand on the shoulders of giants



We've built an opi
tools for Natural |

Features:
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Super easy 1¢
For everyone
State-of-the-
Reduce cost:
Deep interop
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. BERT (from Google) released with the paper BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.

. GPT (from OpenAl) released with the paper Improving Language Understanding by Generative Pre-Training by

Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.

. GPT-2 (from OpenAl) released with the paper Language Models are Unsupervised Multitask Learners by Alec

Radford*, Jeffrey Wu* Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.

. Transformer-XL (from Google/CMU) released with the paper Transformer-XL: Attentive Language Models

Beyond a Fixed-Length Context by Zihang Dai* Zhilin Yang* Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan
Salakhutdinov.

5. XLNet (from Google/CMU) released with the paper XLNet: Generalized Autoregressive Pretraining for

6.

N

9.

Language Understanding by Zhilin Yang* Zihang Dai* Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, ‘ l‘t general'pu rpose

Quoc V. Le.

XLM (from Facebook) released together with the paper Cross-lingual Language Model Pretraining by
Guillaume Lample and Alexis Conneau.

RoBERTa (from Facebook), released together with the paper a Robustly Optimized BERT Pretraining Approach
by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, Veselin Stoyanov.

. DistilBERT (from HuggingFace), released together with the paper DistilBERT, a distilled version of BERT:

smaller, faster, cheaper and lighter by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has
been applied to compress GPT2 into DistilGPT2, RoBERTa into DistilRoBERTa, Multilingual BERT into
DistilmBERT and a German version of DistilBERT.

CTRL (from Salesforce) released with the paper CTRL: A Conditional Transformer Language Model for
Controllable Generation by Nitish Shirish Keskar* Bryan McCann* Lav R. Varshney, Caiming Xiong and Richard
Socher.

10. CamemBERT (from Inria/Facebook/Sorbonne) released with the paper CamemBERT: a Tasty French Language

15.

Model by Louis Martin* Benjamin Muller* Pedro Javier Ortiz Sudrez* Yoann Dupont, Laurent Romary, Eric 1 ;kS
Villemonte de la Clergerie, Djamé Seddah and Benoit Sagot.

. ALBERT (from Google Research and the Toyota Technological Institute at Chicago) released with the paper

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations, by Zhenzhong Lan, Mingda ang uag es
Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.

. T5 (from Google Al) released with the paper Exploring the Limits of Transfer Learning with a Unified Text-to- ‘ ‘

Text Transformer by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang
and Michael Matena and Yangi Zhou and Wei Li and Peter J. Liu.

. XLM-RoBERTa (from Facebook Al), released together with the paper Unsupervised Cross-lingual

Representation Learning at Scale by Alexis Conneau* Kartikay Khandelwal* Naman Goyal, Vishrav Chaudhary,
Guillaume Wenzek, Francisco Guzman, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.

. MMBT (from Facebook), released together with the paper a Supervised Multimodal Bitransformers for

Classifying Images and Text by Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, Davide Testuggine.
Other community models, contributed by the community.



Transformers library: code example

import torch
from transformers import *

# Transformers has a unified API

# for 8 transformer architectures and 30 pretrained weights.

# Model | Tokenizer | Pretrained weights shortcut

MODELS = [(BertModel, BertTokenizer, 'bert-base-uncased'),
(OpenAIGPTModel, OpenAIGPTTokenizer, ‘'openai-gpt'),

Moga oken an

¥ Check it out at *

https://github.com/huggingface/transformers

tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
model = model_class.from_pretrained(pretrained_weights)

# Encode text
input_ids = torch.tensor([tokenizer.encode("Here is some text to encode", add_special_tokens=True)])
with torch.no_grad():

last_hidden_states = model(input_ids) [@] # Models outputs are now tuples

# Each architecture is provided with several class for fine-tuning on down-stream tasks, e.g.

BERT_MODEL_CLASSES = [BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction,
BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification,
BertForQuestionAnswering]



T Tokenizers library

Now that neul

based NLP pi| P pip install tokenizers

We have just i
@ npm install tokenizers

Features:

2 Encode 1| @ crates.io/crates/tokenizers
d BPE/byte

l:' Bindings Eii F;;ii;ii[j;[i;;;...

@ Link: https://qithub.com/hugqgingface/tokenizers

Deep-Learning
model inputs.

zation


https://github.com/huggingface/tokenizers

Overview

[d Session 1: Transfer Learning - Pretraining and representations
A Session 2: Transfer Learning - Adaptation and downstream tasks
A Session 3: Transfer Learning - Limitations, open-questions, future directions

Many slides are adapted from a Tutorial on
Transfer Learning in NLP | gave at NAACL
291 9 with my amazing collaborators

5 s

Sebastian Matthew Swabha
Ruder Peters Swayamdipta
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Transfer Learning in NLP

Follow along with the tutorial:

[ Colab: https://tinyurl.com/NAACLTransferColab
A Code: https://tinyurl.com/NAACLTransferCode



https://tinyurl.com/NAACLTransferColab
https://tinyurl.com/NAACLTransferCode

What is transfer learning?

. ; N ; , Learning Process of Transfer Learning
Learning Process of Traditional Machine Learning

OO OO o
i1 1 1 1 | |
e e et Sy | S p—

(a) Traditional Machine Learning (b) Transfer Learning

Pan and Yang (2010)



https://www.cse.ust.hk/~qyang/Docs/2009/tkde_transfer_learning.pdf

Why transfer learning in NLP?

Many NLP tasks share common knowledge about language (e.g. linguistic
representations, structural similarities)

Tasks can inform each other—e.g. syntax and semantics

Annotated data is rare, make use of as much supervision as available.

Empirically, transfer learning has resulted in SOTA for many supervised NLP
tasks (e.g. classification, information extraction, Q&A, etc).

1



Why transfer learning in NLP? (Empirically)

Performance on Named Entity Recognition (NER) on CoNLL-2003 (English) over time

CNN Large + fine-tune: 93.5

Flair embeddings: 93.09

93 BERT Large: 92.8
BiLSTM-CRF @ Cross-view
+ELMo: 92.22 D + Multi-Task:92.61

o TagLM: 91.93 BERT Base: 92.4

; Ma and Hovy Yang et al..91.26
Lif aHCYRL 2008 LSTM-CNN-CRF: 91.21

Phrase & word clusters: 90.90
91

® LM-LSTM-CRF: 91.24

,LSTM-CRF: 90.94

i@
Chiu and Nichols 2015:90.69
=Y

F1 /
90
Collobert et al. 2011: 89.59

Ando and Zhang. 2005 ¢
co- and self-supervision: 89.31

Passos et al. 2014: 90.05

89 ./
Florian et al., 2003: 88.76
88 S £ } 7 £ } 7 £ } } } } 1 1 } } } } } } } i } }
Jun 03 Jun 05 Jun 09 Jun 11 Jun12 Jun13 Jun 14 Jun 15 Jun 16 Jun17 Jun 18

Jun 19
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Types of transfer learning in NLP

Different domains

Same task;

Transductive

transfer

learning

labeled data
only in source
domain

Transfer

learning

Different tasks;
labeled data
in target

Different languages

Domain

adaptation

Cross-lingual

learning

Tasks learned
simultaneously

domain

Inductive

transfer

learning

Tasks learned
sequentially

Multi-task

learning

[

|

Sequential

transfer learning

We will

focus on

this

Ruder (2019)
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http://ruder.io/thesis/neural_transfer_learning_for_nlp.pdf

What this tutorial is about and what it's not about

Goal: provide broad overview of transfer methods in NLP, focusing on the
most empirically successful methods as of mid 2079

Provide practical, hands on advice — by end of tutorial, everyone has ability to
apply recent advances to text classification task

What this is not: Comprehensive (it's impossible to cover all related papers in
one tutorial!)

(Bender Rule: This tutorial is mostly for work done in English, extensibility to
other languages depends on availability of data and resources.)

14



Agenda
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[1] Introduction [2] Pretraining [4] Adaptation ) [5] Downstream

l l

Q g

[3] What's in a [6]
representation? Open Problems
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Sequential transfer learning

Learn on one task / dataset, then transfer to another task / dataset

Pretraining

—>

word2vec
GloVe
skip-thought
InferSent
ELMo
ULMFIT
GPT

BERT

Adaptation

—>

classification
sequence labeling
Q&A

Q
o202
000

17



Pretraining tasks and datasets

d Unlabeled data and self-supervision

J
m

J

Easy to gather very large corpora: Wikipedia, news, web crawl, social media, etc.

Training takes advantage of distributional hypothesis: “You shall know a word by the company
it keeps” (Firth, 1957), often formalized as training some variant of language model

Focus on efficient algorithms to make use of plentiful data

A Supervised pretraining

I W Wiy W

Very common in vision, less in NLP due to lack of large supervised datasets
Machine translation

NLI for sentence representations

Task-specific—transfer from one Q&A dataset to another

18



Target tasks and datasets

Target tasks are typically supervised and span a range of common NLP tasks:

Sentence or document classification (e.g. sentiment)
Sentence pair classification (e.g. NLI, paraphrase)
Word level (e.g. sequence labeling, extractive Q&A)
Structured prediction (e.g. parsing)

Generation (e.g. dialogue, summarization)

Iy My Wiy Ny N

19



Concrete example—word vectors

Word embedding methods (e.g. word2vec) learn one vector per word:

cat=[0.1,-0.2,0.4, ..]

dog =[0.2,-0.1,0.7, ..]

20



Concrete example—word vectors

Word embedding methods (e.g. word2vec) learn one vector per word:

cat=[0.1,-0.2,0.4, ..]

dog =[0.2,-0.1,0.7, ..]

—»

—

PRP VBP PRP NN CC NN

love my cat and dog .

A



Concrete example—word vectors

Word embedding methods (e.g. word2vec) learn one vector per word:

cat=[0.1,-0.2,0.4, ..]

—

dog =[0.2,-0.1,0.7, ... \

PRP VBP PRP NN CC NN

RN

love my cat and dog .

| love my cat and dog . }-> “positive"

22



Major Themes

23



Major themes: From words to words-in-context

Word vectors
cats = [0.2,-0.3, ..]

dogs =1[0.4,-0.5, ..]

Sentence / doc vectors

We have two
} [1.2,0.0, ..]
cats.

It's raining 0.8 05
cats and dogs. } (08 ) ]

Word-in-context
vectors

[1.2,-0.3, ..]

~—
We have two cats.

[-0.4,0.9, ..]

; Y
It's raining cats and dogs.

24
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Major themes: LM pretraining

Many successful pretraining approaches are based on language modeling
Informally, a LM learns P (text) or P(text | some other text)

Doesn't require human annotation

Many languages have enough text to learn high capacity model
Versatile—can learn both sentence and word representations with a variety of
objective functions

25



Major themes: From shallow to deep

i-th output = P(w, = i| context)

softmax
(eoe [ X .- [ XX D)
/ 4 Y
’ v 3 \
’ ’ most| computation here \
‘ ’ \
’ . \
! ] \
1 f 1
;] / tanh !
' , e 3 °se) |
1 \ '
! ’
1 ’
1
1 ~
C(WlfrH» Yoo R C(W 2) C(Wt l)
(ee o) ... (e o
Table 1 ~. Matrix C
:ﬁoé—up shared parameters
across words
index for wy_,41 index for w;_» index for w,_;

Bengio et al 2003: A Neural
Probabilistic Lanquage Model

BERT (Ours)

Devlin et al 2019: BERT: Pre-training of Deep

Bidirectional Transformers for Language
Understanding

26


http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

Major themes: pretraining vs target task

Choice of pretraining and target tasks are coupled

d Sentence / document representations not useful for word level predictions

d  Word vectors can be pooled across contexts, but often outperformed by other
methods

A In contextual word vectors, bidirectional context important

In general:

A Similar pretraining and target tasks — best results

27



[

[1] Introduction

[2] Pretraining

[4] Adaptation

N\

[5] Downstream

[3] What's in a
representation?

|

Q;

[6]

Open Problems
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Overview

Language model pretraining

Word vectors

Sentence and document vectors
Contextual word vectors
Interesting properties of pretraining

Cross-lingual pretraining

30



LM pretraining

word2vec, Mikolov et al (2013) ELMo, Peters et al. 2018, ULMFiT (Howard & Ruder
2018), GPT (Radford et al. 2018)

- D
A 775t

7 T TIT

We [have a 77?2 and three] c}ogs We have a 777

BERT, Devlin et al 2019

P 777
Skip-Thought

0? q@»@ (@0 (Kiros et al. @f‘_’ @{}_@?’W@P I
2015)
00 (00 (00 (?

We like pets. } —

-+

@0 @0 @0 @0 (g9 (@0
V\}e haIveeIl 227 We have a MASK and thlIee dc@gs
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https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1506.06726
https://arxiv.org/abs/1506.06726
https://arxiv.org/abs/1810.04805

Word vectors

Ky



Why embed words?

A Embeddings are themselves parameters—can be learned
A Sharing representations across tasks

[ Lower dimensional space

A Better for computation—difficult to handle sparse vectors.

33



Unsupervised pretraining : Pre-Neural

Latent Semantic Analysis (LSA)—SVD
of term-document matrix, (Deerwester
et al., 1990)

documents

| | \ |1 [ |
| ) | \ [ * || [
| X =1 T | | §*| D |
| | \ [ [ PP [
terms | | | | k x k k x d
| | \ |
| | \ |
| | \ |
| oo g sonsece I [ |
t x d t x k
X = T S D

plan

letter

request

memo

case

question

Brown clusters, hard charge
statement

hierarchical clustering draft
based on n-gram LMs, day

year
week

(Brown et al. 1992) o
quarter
half

reps
representatives
representative

rep

evaluation
assessment
analysis
understanding
opinion —
conversation —
discussion —J

accounts
people
customers
individuals
employees
students

-

(Blei et al., 2003)

Latent Dirichlet Allocation (LDA)—Documents are
mixtures of topics and topics are mixtures of words

34


http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf
http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://www.aclweb.org/anthology/J92-4003

Word vector pretraining

n-gram neural language model
(Bengio et al. 2003)

i-th output = P(w, = i| context)

softmax
(eoee S [ X s [ XX D]
‘ 7 X
4 most| computation here
’
1
[
! 1
! ! tanh
1 \ 1
f i Ceeoo =0 el o0 ) ¥
! 1 1
I \ i
1 ’
1 0 ’
N 7’
1 < ’
C(Wi-ns S [Cwa)  Cw)\ -7
(e -—~9) ... (@0 . 9) (oo --.0)
Table . Matrix C 57
:zo(l;—up shared parameters
across words
index for wy_,41 index for wy_» index for w,_;

Supervised multitask word
embeddings (Collobert and Weston,

2008)

Lookup Tables Lookup Tables
T s 1Y/ T Ve 1
wejl ¢ 2 w

E Convolution ] C Convolution ]
]
J
]

E Max ] C Max
[— _ Classical NN Layer(s)] C Classical NN Layer(s)

[ ¥ softmax ]l:_ " Softmax

Task 1 Task 2
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http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf
https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf

word2vec

Efficient algorithm + large scale training — high quality word vectors

Wt-2

(Mikolov et al., 2013) We.2

cBOWwW SKIPGRAM

Wi.1 Wi-1

Wi, 1 Wit

Wi 2

Wt 2

(00 (00 (00 (00
(00
(00

T
1 1
> logp(uwi ) 33 logp(uwr.j|wr)

iy e
t=1 —c<j<c,j#0 t=1 —¢c<j<c,j#0

See also:
[ Pennington et al. (2014): GloVe

A Bojanowski et al. (2017): fastText
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https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://nlp.stanford.edu/projects/glove/
https://arxiv.org/abs/1607.04606

Sentence and document vectors

37



Paragraph vector

Unsupervised paragraph embeddings (Le & Mikolov, 2014)

[the] [cat] [sat] [on ]

Classifier Classifier

Average/Concatenate

###

Paraqraph the

Paragraph Matrix----- 5 Paragraph Matrix ---------2 >

Paragraph
id

DM (Distributed Memory) DBOW (Distributed Bag of Words)

SOTA classification (IMDB, SST)

Model Error rate
BoW (bnc) (Maas et al., 2011) 12.20 %
BoW (bAt’c) (Maas et al., 2011) 11.77%
LDA (Maas et al., 2011) 32.58%
Full+BoW (Maas et al., 2011) 11.67%
Full+Unlabeled+BoW (Maas et al., 2011) 11.11%
WRRBM (Dahl et al., 2012) 12.58%
WRRBM + BoW (bnc) (Dahl et al., 2012) 10.77%
MNB-uni (Wang & Manning, 2012) 16.45%
MNB-bi (Wang & Manning, 2012) 13.41%
SVM-uni (Wang & Manning, 2012) 13.05%
SVM-bi (Wang & Manning, 2012) 10.84%
NBSVM-uni (Wang & Manning, 2012) 11.71%
NBSVM-bi (Wang & Manning, 2012) 8.78%
Paragraph Vector 7.42%

38



https://arxiv.org/abs/1405.4053

Skip-Thought Vectors

Predict previous / next sentence with seq2seq model (Kiros et al., 2015)

| got back home <eos>
e <eos> }‘I )g:: back home
| could see the cat on the steps . _: This was strange <eos>
<eos> This was strange
Method MR CR SUBJ] MPQA TREC
NB-SVM [41] 794 818 932 863 Hidden state of encoder
MNB [41] 790 800  93.6 86.3
cBoW [6] 772 799 913 86.4 87.3 transfers to sentence tasks
GrConv [6] 763 813 895 84.5 88.4 . . .
RNN [6] 772 823 937 90.1 90.2 (CIaSS|ﬂcat|on, semantic
BRNN [6] 823 826 942 90.3 91.0 Ca .
CNN [4] 81,5 850 934 89.6 93.6 simila I’Ity)
AdaSent [6] 831 863 955 93.3 92.4
Paragraph-vector [7] 74.8  78.1 90.5 74.2 91.8
uni-skip 755 193 O2.1 86.9 91.4
bi-skip 739 779 925 83.3 89.4
combine-skip 76.5 80.1 93.6 87.1 92.2
combine-skip + NB 804 813 93.6 87.5

39


https://arxiv.org/abs/1506.06726

Autoencoder pretraining

Dai & Le (2015): Pretrain a sequence autoencoder (SA) and generative LM

SOTA classification (IMDB)
W X Y z <eos>

\ Model Test error rate
LSTM with tuning and dropout 13.50%

i 10
T T T T LM-LSTM (see Section 2) 7.64%
SA-LSTM (see Figure 1 7.24%
W X Y VA <eos> w X Y z
= 0

with linear gain (see Section 3)

SA-LSTM with joint training (see Section 3) 14.70%
Full+Unlabeled+BoW [21] 11.11%
WRRBM + BoW (bnc) [21] 10.77%
NBSVM-bi (Naive Bayes SVM with bigrams) [35] 8.78%
seq2-bowrn-CNN (ConvNet with dynamic pooling) [11] 7.67%
Paragraph Vectors [18] 7.42%

See also:
O Socher et. al (2011): Semi-supervised recursive auto encoder
O Bowman et al. (2016): Variational autoencoder (VAE)

O Hilletal. (2016): Denoising autoencoder

40


https://arxiv.org/abs/1511.01432
https://www.aclweb.org/anthology/D11-1014
https://arxiv.org/pdf/1511.06349.pdf
https://arxiv.org/abs/1602.03483

Supervised sentence embeddings

Also possible to train sentence embeddings with supervised objective

Paragram-phrase: uses paraphrase database for supervision, best for
paraphrase and semantic similarity (Wieting et al. 2016)

InferSent: bi-LSTM trained on SNLI + MNLI (Conneau et al. 2017)

GenSen: multitask training (skip-thought, machine translation, NLI, parsing)
(Subramanian et al. 2018)

41


https://arxiv.org/abs/1511.08198
https://arxiv.org/abs/1705.02364
https://arxiv.org/abs/1804.00079

Contextual word vectors

42



Contextual word vectors - Motivation

Word vectors compress all contexts into a single vector

Nearest neighbor GloVe vectors to “play”

VERB NOUN ADJ 2?

playing game multiplayer plays

played CEINES Play
players

football

43



Contextual word vectors - Key Idea

Instead of learning one vector per word, learn a vector that depends on context

f(play | The kids play a game in the park.)
=
f(play | The Broadway play premiered yesterday.)

Many approaches based on language models

44



context2vec

Use bidirectional LSTM and cloze Learn representations for both Sentence completion
prediction objective (a 1 layer masked LM) words and contexts (minus word) Lexical substitution
WSD

objective function

sentential
context

c2v c2v | AWE || S-1 | S-2

embeddings target word Are you [ ] with the service ? :
embeddings A | iters+ )
26 MCSS
A.Vi\?’/‘ test || 64.0 | 627 ] 484 || - | -
lam[] 2t .O all | 65.1 | 613 | 49.7 || 589 | 56.2
toinformyou ()~ satisfied LST07
@ happy test || 56.1 | 54.8 | 419 || 552 | -
O all || 56.0 | 54.6 | 42.5 || 55.1 | 53.6
@ product LST-14
here roatils O test | 47.7 | 473 | 38.1 [ 500 | -
= all || 47.9 | 475 | 389 || 50.2 | 483
7 A SE-3

John [ submitted ] a paper submitted Are you happy with the[]7 test H 72.8 | 712 | 61.4 H 74.1 | 73.6

[:] left-to-right context word embeddings

l:l right-to-left context word embeddings

(Melamud et al., CoNLL 20%®6)



https://www.aclweb.org/anthology/K16-1006

Pretrain two LMs (forward and backward) and add to sequence tagger.
SOTA NER and chunking results

C

B-LOC

RF . £Loc — Sequence

Pre-trained bi-LM

tagging

h,, Sequence
representation

bi-RNN
(R)

e JI 0 ] o 0 ]

* bi-RNN (R,)

Backward LM

Token
representation

New York is located ...

o

Concat LM
embedding

Token
representation

£ £
Char
CNN/ Token \
RNN embedding(”_)
R X

—i N

—— Forward LM

Token
representation

New York is located ...

New York is

located

Model Fi+ std

Chiu and Nichols (2016) | 90.91 £ 0.20
Lample et al. (2016) 90.94

Ma and Hovy (2016) 91.37

Our baseline without LM | 90.87 +0.13
TaglLM 91.93 +0.19

Table 1: Test set F1 comparison on CoNLL 2003
NER task, using only CoNLL 2003 data and unla-

beled text.

(Peters et al. ACL 2017)
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https://arxiv.org/abs/1705.00108

Unsupervised Pretraining for Seq2Seq

<EOS>

2

Softmax

vwww

Pretrain encoder and decoder
Second RNN Layer with LMs (everything shaded
is pretrained).

First RNN Layer
Embedding
| | | | | | | |
1 1 I 1 I I 1 I
A B ¢ <EOS> w X Y z
BLEU
System ensemble? newstest2014  newstest2015
Phrase Based MT (Williams et al., 2016) - 21.9 237
Supervised NMT (Jean et al., 2015) single - 22.4 Large boost for MT.
Edit Distance Transducer NMT (Stahlberg et al., 2016) single 21.7 24.1
Edit Distance Transducer NMT (Stahlberg et al., 2016)  ensemble 8 22.9 25.7
Backtranslation (Sennrich et al., 2015a) single 22.7 25.7
Backtranslation (Sennrich et al., 2015a) ensemble 4 23.8 26.5
Backtranslation (Sennrich et al., 2015a) ensemble 12 24.7 27.6
No pretraining single 21.3 243
Pretrained seq2seq single 24.0 27.0
Pretrained seq2seq ensemble 5 24.7 28.1

(Ramachandran et al, EMNLP 2017)
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CoVe

a) _ ~ b) T Pretrain bidirectional
frencietion™ | \ \ encoder with MT
f | i | supervision, extract
Encoder —» Decoder | Encoder Encoder LSTM states
' A A
1 | | . .
Word 3 Word Word Adding CoVe with
Vectors i Vectors Vectors

GloVe gives
Glover ______— _— ITprQ}/eﬁl?nts Nfﬂ 0en

Dataset Random GloVe Char CoVe- - CoVe-L Char+CoVe-L classitcation, '
y 4

SST-2 84.2 88.41 90.1 89.0 90.9 21,1 91.2
SST-5 48.6 335 522 54.0 54.7 54.5 55.2
IMDb 88.4 91.1] 913 90.6 91.6 91.7 92.1
TREC-6 88.9 949) 94.7 94.7 95.1 95.8 95.8
TREC-50 81.9 89.2] 89.8 89.6 89.6 90.5 91.2
SNLI 823 877y 8117 87.3 87.5 87.9 88.1
SQuAD 65.4 76.0) 78.1 76.5 Tl 79.5 79.9

(McCann et al, NeurlPS 2017)
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ELMo

)

LSTM

o

LSTM LSTM LSTM

oy o e

The Broadway play premiered vesterday

LSTM

o

INCREASE
TASK PREVIOUS SOTA Our ELMo + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7124.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7+0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 32/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 £ 0.19 || 90.15 9222 +£0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 514 54.7+£0.5 3.3/6.8%

Pretrain deep bidirectional LM,
extract contextual word vectors
as learned linear combination of
hidden states

SOTA for 6 diverse tasks

(Peters et al, NAACL 2018)
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ULMFIT

I
ayer
i { H \ [ ‘} i
Layer3 | Hon ayerdt | .
N TR 7 N " Pretrain AWD-LSTM LM,
IR —— ge 4 fine-tune LM in two stages with
pabm : B | different adaptation techniques
Layer] d Layer | 0t Layer 1 it
R R el e R B PRV oo ot
The gold dollar or gold The best scene ever The best scene ever
(a) LM pre-training (b) LM fine-tuning (c) Classifier fine-tuning
Model Test  Model Test SOTA for six classification
CoVe (McCann et al., 2017) 82  CoVe (McCann et al., 2017) 4.2 datasets
g oh-LSTM (Johnson and Zhang, 2016) 5.9 ) TBCNN (Mou et al., 2015) 4.0
E Virtual (Miyato et al., 2016) 5.9 '&3 LSTM-CNN (Zhou et al., 2016) 3.9
ULMEFIT (ours) 4.6 T ULMFIT (ours) 3.6

AG DBpedia Yelp-bi Yelp-full

Char-level CNN (Zhang et al., 2015) 9.51  1.55 4.88 37.95
CNN (Johnson and Zhang, 2016) 6.57 0.84 2.90 32.39
DPCNN (Johnson and Zhang, 2017) 6.87  0.88 2.64 30.58
ULMEFiT (ours) 501  0.80 2.16 29.98 (Howard and Ruder, ACL 2018)
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GPT

Classification l Start I Text I Extract IH Transformer H Linear I Pretrain |arge 1 2_|ayer
S .
left-to-right Transformer, fine
tune for sentence, sentence
P pair and multiple choice

I Start | Text 1 | Delim l Text 2 IExtract I—-.{ Transformer .
Similarity = Linear q u eStIO ns.
| Start ] Text 2 I Delim l Text 1 l Extract |—~[ Transformer

l Start ] Context I Delim ] Answer 1 ]Exlracl I——’{ Transformer H Linear

Entailment | Start I Premise | Delim l Hypothesis I Extract |——-I Transformer H Linear ]

Feed Forward

12x -

Multiple Choicel Start I Context | Delim | Answer 2 IExll'acl |~—>{ Transformer H Linear

]::l : : , SOTA results for 9 tasks.
Text & Position Embed l Start ] Context I Delim ] Answer N I Extract I —»{ Transformer H Linear

Method MNLI-m MNLI-mm SNLI SciTail QNLI RTE

ESIM + ELMo [44] (5x) - - 89.3 - - -

CAFE [58] (5x) 80.2 79.0 89.3 - - -

Stochastic Answer Network [35] (3x) 80.6 80.1 - - - -

CAFE [58] 78.7 77.9 88.5 83.3

GenSen [64] 71.4 71.3 - - 823 59.2

Multi-task BILSTM + Attn [64] 122 72.1 - - 82.1 61.7

(Radford et al., 2018)
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BERT

BERT pretrains both sentence and contextual word representations,
using masked LM and next sentence prediction.
BERT-large has 340M parameters, 24 layers!

ﬁp Mask LM Mai LM \ /m /%D Start/End Span\
i *

20—
Le ) ()] (0] EEA EB™Ea &
L .| >
BERT ... .............. . .-..h .. ’ BERT
[Eea | & | [ & ][ Eenl[ & |- [&] [Eeall & | [ ][ Een|[ & |- [&]
—— u| pommmy | pemmms " S pe—— ar T s
[[CISI][TOK1]“. [TokN][ [SEP] ][Tou]m [Toku] m Tok1 | . [TokN][ [SEP) ][rou]_" [Tcm]

Masked Sentence A Masked Sentence B Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

See also: Logeswaran and Lee, ICLR 2018 (Devlin et al. 2019)
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BERT

SOTA GLUE benchmark results (sentence pair classification).

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.9k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 133 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 751
BERTgasE 84.6/83.4 T2 90.5 93.5 a2l 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

(Devlin et al. 2019)
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BERT

SOTA SQUAD v1.1 (and v2.0) Q&A

System Dev Test
EM F1 EM Fl

Top Leaderboard Systems (Dec 10th, 2018)

Human - - 823 912
#1 Ensemble - nlnet - - 86.0 91.7
#2 Ensemble - QANet - - 84.5 90.5
Published
BiDAF+ELMo (Single) - 856 - 858
R.M. Reader (Ensemble) 81.2 879 82.3 88.5
Ours

BERTgask (Single) 80.8 88.5 - -
BERT| srce (Single) 84.1 90.9 - -
BERT| srce (Ensemble) 85.8 91.8

BERT srce (Sgl+TriviaQA) 84.2 91.1 85.1 91.8
BERT, srce (Ens.+TriviaQA) 862 922 87.4 93.2

(Devlin et al. 2019)
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Other pretraining objectives

Learning on a Labeled Example

ives ij i Primary
"She lives in BILSTM R
= > P
Washington." Encoder Prediction ]

Module A

[ Contextual string representations (Akbik et al., T — I
COLING 2018)—SOTA NER results

"They traveled to BIiLSTM
Washington by plane” Encoder

[ Cross-view training (Clark et al. EMNLP
2018)—improve supervised tasks with unlabeled
d a‘t a Inputs Seen by Auxiliary Prediction Modules

Auxiliary 1:  They traveled to

Auxiliary 2:  They traveled to Washington
Auxiliary 3: Washington by plane

3 Cloze-driven pretraining (Baevski et al. R —

. . Figure 1: An overview of Cross-View Training. The
! 201 9) —SOTA N ER a nd Constltuency parS I ng model is trained with standard supervised learning on
labeled examples. On unlabeled examples, auxiliary
prediction modules with different views of the input
are trained to agree with the primary prediction mod-
ule. This particular example shows CVT applied to
named entity recognition. From the labeled example,
the model can learn that “Washington” usually refers
to a location. Then, on unlabeled data, auxiliary pre-
diction modules are trained to reach the same predic-
tion without seeing some of the input. In doing so, they
improve the contextual representations produced by the
model, for example, learning that “traveled to” is usu-
ally followed by a location. 55



https://alanakbik.github.io/papers/coling2018.pdf
https://alanakbik.github.io/papers/coling2018.pdf
https://arxiv.org/abs/1809.08370
https://arxiv.org/abs/1809.08370
https://arxiv.org/abs/1903.07785
https://arxiv.org/abs/1903.07785

L L

Why does language modeling work so well?

Language modeling is a very difficult task, even for humans.

Language models are expected to compress any possible context into a
vector that generalizes over possible completions.

d  “They walked down the street to ???”

To have any chance at solving this task, a model is forced to learn syntax,
semantics, encode facts about the world, etc.

Given enough data, a huge model, and enough compute, can do a
reasonable job!

Empirically works better than translation, autoencoding: “Language
Modeling Teaches You More Syntax than Translation Does” (Zhang et al.
2018)
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Sample efficiency
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Pretraining reduces need for annotated data

SNLI (Accuracy) SRL (F1)

+1.41 90+ +3.1
+10.8

90+ +1.5

80 -
80- 70
60 -
70‘.|.12_ 50 _+18.
601" 401 -
301 ,/ —— with ELMo
504 20 '/l ---- Baseline

0.1% 1% 10% 100% 0.1% 1% 10% 100%

(Peters et al, NAACL 2018)
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Pretraining reduces need for annotated data

Accuracy

CCG

[te] o e}
w = w
1 1 1

O
N
!

10 25 50 75 100
Percent of Training Set Provided

Dependency Parsing

10 25 50 75 100

Percent of Training Set Provided

—— CVT

Chunking
96-./"’""'____—.—.
————.——_—.

94 >
= o
92{ *

,/
901 ¢

10 25 50 75 100
Percent of Training Set Provided

10 25 50 75 100

Percent of Training Set Provided

-®- Supervised

(Clark et al. EMNLP 2018)
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Pretraining reduces need for annotated data

—— From scratch

< 40 —— ULMFIT, supervised ~ 60 - 60

2 : ? . B 2

P —— ULMFIT, semi-supervised P o 50

B o o

5% 5 5 40

@ @ @

c c c

S S S 30

720 e 7

z e z

© ® T 20

> > >
10 1 a 10 =
100 200 500 1000 2000 5000 10000 20000 100 200 500 1000 2000 4000 100 200 500 10002000 500010000 25000 100000

# of training examples # of training examples # of training examples

(Howard and Ruder, ACL 2018)
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e asssamasa———— 84 ———
79 I —_ sl -
74 e el
fif ————ent e e
69 . Antti Virtanen et al., “Multilingual Is Not
64 . S
— FinBERT uncased 59 ~ FinBERT uncased Enough BERT for meSh’
82 -~ FinBERT cased == FinBERT cased ArXiv:1912.07076 [Cs], December 15,
== M-BERT uncased 54 == M-BERT uncased . ;
e MCBERT cace] o s BEEETT cnsed 2019, http://arxiv.org/abs/1912.07076.
— FastText o — FastText
77 44
1K 10K 100K 1K 10K 100K

Figure 1: Text classification accuracy with different training data sizes for Yle news (left) and Ylilauta online
discussion (right). (Note log x scales and different y ranges.)
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Scaling up pretraining
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Scaling up pretraining

- Semantic - Syntactic - Overall

85 [

More data —
better word
vectors

Accuracy [%)]

(Pennington et al
2014)

Gigaword5 +

Wiki2010 Wiki2014 Wiki2014 Common Crawl
1B tokens 1.6B tokens 4.3B tokens 6B tokens 42B tokens

Gigaword5
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Scaling up pretraining

8 1 . 5 | | | | | |
—e— Average GLUE score

0]
—_
|
|

Avg. GLUE score
Qo
(@)
3y
|
|

80 | :

| | | | |
562M 1.1B 2.25B 4.5B 9B 18B
Train data tokens

Figure 3: Average GLUE score with different amounts
of Common Crawl data for pretraining.

Baevski et al.

(2019) o
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Scaling up pretraining

Hyperparams Dev Set Accuracy

#L #H #A LM (ppl) MNLI-m MRPC SST-2 B d |
—
3 768 12 5.84 779 79.8 88.4 Igger mode

6 768 3 524 80.6 822 907 better results
6 768 12 4.68 819 848 913

12 768 12 3599 84.4 86.7 929
12 1024 16 3.54 85.7 869 '93.3 ;
24 1024 16 3.23 86.6 87.8 93.7 (DeV“n et al

2019)

Table 6: Ablation over BERT model size. #L = the
number of layers; #H = hidden size; #A = number of at-
tention heads. “LM (ppl)” is the masked LM perplexity
of held-out training data.
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Cross-lingual pretraining
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Cross-lingual pretraining

10 e
d Much work on training
cross-lingual word embeddings g §L§P%’ffﬂ%‘§»
(Overview: Ruder et al. (2017)) i ol g;ﬁgt,::, .
3 Idea: train each language L PG é,:ci?ffi:mm =
separately, then align. 00 @m;&vgzgffﬁéﬁff v . ‘s"&mgﬁp@ﬂ“g@
3 Recent work aligning ELMo: oo by g‘é’&&mm P
Schuster et al., (NAACL 2019) T I )
3 ACL 2019 Tutorial on Unsupervised T g g SRR .
Cross-lingual Representation y Py B o
ALearnln | -1.0 —-0.5 0.0 — 0.5 1.0
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Scaling multilingual pretraining

Scaling to hundred of languages and TBs of data

10?

-

: T

o """|||||||III|||||..

Dataset size (in GB)

S e 8 RN S R TR S R N E RN E BB SN g T R NS RS SR T AT RSB R E S B RPANS HRERYYS %,?nura

|lCmmo nCrawl B Wikipedia |

Training on 6.1T tokens (1.5M steps, BS 8k, seq length 512, model: 570M)

Alexis Conneau et al., “Unsupervised Cross-Lingual Representation Learning at Scale,” ArXiv:1911.02116 [Cs], November

5, 2019, http://arxiv.org/abs/1911.02116

En-Fr XNLI
Default

Studying language-universal Wiki-CC I ——
structures emerging in Default anchors I

) No anchors
pretrained language models: Extra anchors e

- Sharing parameters is key Sep Emb I

Sep Emb + L1-3

rather than anchor points >l B s
- zero-shot crosslingual transfe > °" .~
Shijie Wu et al., “Emerging Cross-Lingual Structure ACC

in Pretrained Language Models,” ArXiv:1911.01464 [Cs],
November 10, 2019, http://arxiv.ora/abs/1911.01464.

Embeddings (En)

.

Embeddings (Zh) !(',

Layer 8 (En-Zh) I

Layer k+1 (En-zh) |

shared

[ Layer k (En) |-}
shared
ornpf .
[ Layer 1 (En) b
shared
ooooo
Embeddings (En) T Embeddlngs (Zh) |<
5 il B (5 B e ] B
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Cross-lingual Polyglot Pretraining
Key idea: Share vocabulary and representations across languages by training one
model on many languages.

Advantages: Easy to implement, enables cross-lingual pretraining by itself

Disadvantages: Leads to under-representation of low-resource languages
O LASER: Use parallel data for sentence representations (

)
a : BERT trained jointly on 100 languages

O Rosita: Polyglot contextual representations ( )
d  XLM: Cross lingual LM ( )
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Hands-on #1:
Pretraining a Transformer Language Model
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Hands-on: Overview .~

Current developments in Transfer Learning combine new approaches for training schemes
(sequential training) as well as models (transformers) = can look intimidating and complex

d  Goals:

[ Let's make these recent works “uncool again” i.e. as accessible as possible
d  Expose all the details in a simple, concise and self-contained code-base
O Show that transfer learning can be simple (less hand-engineering) & fast (pretrained model)

d  Plan
A Build a GPT-2 / BERT model
A Pretrain it on a rather large corpus with ~100M words
d Adapt it for a target task to get SOTA performances

d Material:

[ Colab: http://tiny.cc/NAACLTransferColab > code of the following slides
O Code: http://tiny.cc/NAACLTransferCode = same code organized in a repo
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Hands-on pre-training

Colab: https://tinyurl.com/NAACLTransferColab

& NAACL 2019 Tutorial on Transfer Learning in Natural Language Processing

File Edit View Insert Runtime Tools Help

Locate in Drive

Tableof ¢ OPenin playground mode

Notebook New Python 3 notebook

on "Trans New Python 2 notebook
Processir
Open notebook...
Instal
Upload notebook...
Introducti
Rename...

Colabanc ~ Move to trash
Ourtrans!  Save a copy in Drive...
Pretr:

Save a copy in GitHub...
Pretrain o

Save a copy as a GitHub Gist...

8/Ctrl+0

otebook accompanying NAACL 2019 tutori:
atural Language Processing".

» tutorial will be given on June 2 at NAACL 2019 in Mit lis, MN, USA by Seb

1 can check the webpage of NAACL tutorials for more information.

ther material: slides and code.

stall and notebook preparation

> 1 cell hidden

Repo: https://tinyurl.com/NAACLTransferCode

[J huggingface / naacl_transfer_learning_tutorial @unwatch~ 11 HAstar 52 YFork 3

<> Code Issues 0

Pull requests 0 Projects 0 Wiki Security Insights Settings
Repository of code for the NAACL tutorial on Transfer Learning in NLP Edit
nlp  transfer-learning  tutorial  naacl Manage topics

Code repository accompanying NAACL 2019 tutorial on
"Transfer Learning in Natural Language Processing"

The tutorial will be given on June 2 at NAACL 2019 in Minneapolis, MN, USA by Sebastian Ruder, Matthew Peters, Swabha
Swayamdipta and Thomas Wolf.

Here is the webpage of NAACL tutorials for more information.
Installation
To use this codebase, simply clone the Github repository and install the requirements like this:

git clone https://github.com/huggingface/naacl_transfer_learning_tutorial
cd naacl_transfer_learning_tutorial
pip install -r requirements.txt
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Hands-on pre-training

Our core model will be a Transformer. Large-scale transformer architectures (GPT-2, BERT, XLM...) are very similar

to each other and consist of:

O summing words and position embeddings

d  applying a succession of transformer blocks with:

a
a
a

a
a

a

Main differences between GPT/GPT-2/BERT are the objective functions:

layer normalisation

a self-attention module
dropout and a residual connection

another layer normalisation

a feed-forward module with one hidden layer and
a non linearity: Linear = ReLU/gelu = Linear
dropout and a residual connection

[  causal language modeling for GPT
O masked language modeling for BERT (+ next sentence prediction)

(Z1,22y. .y 2n)
I embed —l
norm
attention
. :
+ dropout
e —
norm
> feed-forward
1
I dropout
hlg_—,

We'll play with both

(Child et al. 20F0)
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Hands-on pre-training

Let’s code the backbone of © imvort toron :

import torch.nn as nn

our model!

class Transformer(nn.Module):
def _ init_ (self, embed_dim, hidden_dim, num_embeddings, num max_positions, num heads, num layers, dropout, causal):
super().__init_ ()

PYTOI’Ch 1 1 nOW haS a self.tokens_embeddings = nn.Embedding(num_embeddings, embed dim)

self.position_embeddings = nn.Embedding(num max positions, embed dim)

nn.MUItiHeadAttentlon A self.drogout = nn.Drogout‘drogout)
module: lets us encapsulate s e e e L e )
the self-attention logic while e e —

. . . self.feed forwards.append(nn.Sequential(nn.Linear(embed dim, hidden dim),
still controlling the internals B Tn i re—

nn.LinearZhidden_dim, embed_dim)))
Wu, ) —
Of the Tra n Sformer self.layer norms_2 .append(nn.LayerNorm(em.bed_dim: eps=le-12))

def forward(self, x, padding mask=None):
-

(21,22, .., 2n) positions = torch.arange(len(x), device=x.device).unsqueeze(-1)
h self.tokens_embeddings(x)
/ h = h + self.position_embeddings(positions).expand_as(h)

h self.dropout(h)

attn_mask = None

if self.causal:

attn_mask = torch.full((len(x), len(x)), -float('Inf'), device=h.device, dtype=h.dtype)
attn _mask = torch.triu(attn_mask, diagonal=1)

for layer_norm 1, attention, layer norm 2, feed forward in zip(self.layer norms_1l, self.attentions,
self.layer norms_2, self.feed forwards):

= layer _norm_1(h)
, _ = attention(h, h, h, attn_mask=attn_mask, need weights=False, key_ padding mask=padding_mask)
self.dropout(x)

x + h
4

layer norm 2(h)
feed_forward(h)
self.dropout (x)
Xo+ h'

1
dropout

h
X
X
h
h
X
x
h
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Hands-on pre-training

Two attention masks? © imort torch :

import torch.nn as nn

. class Transformer(nn.Module):
D p addl ng mas k maSkS def _ init (self, embed dim, hidden dim, num_embeddings, num max positions, num heads, num_ layers, dropout, causal):
_— super()._ init_ ()

the padding tokens. It is self.causal = Causal

self.tokens_embeddings = nn.Embedding(num_embeddings, embed dim)

H self.position_embeddings = nn.Embedding(num max positions, embed dim)
SpeCIﬁC to eaCh Sample self.dropout = nn.Dropout(dropout) '
i n the batCh: self.attentions, self.feed_ forwards = nn.ModuleList(), nn.ModuleList()

self.layer_norms_1l, self.layer norms_2 = nn.ModuleList(), nn.ModuleList()
for _ in range(num_layers):

| love |[Mom| s cooki ng self.attentions.append(nn.MultiheadAttention(embed_dim, num heads, dropout=dropout))
self.feed forwards.append(nn.Sequential(nn.Linear(embed dim, hidden_dim),
| love| you | too | ! nn.ReLU(),
No way nn.Linear (hidden_dim, embed_dim)))
s : . self.layer_norms_l.append(nn.LayerNorm(embed dim, eps=le-12))
This IS the | shit selfsvlayer norms 2.append(nn.LayerNorm(embed dim, eps=le-12))
Yes

def forward(self, 'x, padding_mask=None):

positions = torch.arange(len(x), device=x.device).unsqueeze(-1)
h self.tokens_embeddings(x)

D attn maSk |S the same h = h + self.position_embeddings(positions).expand_as(h)
— . h self.dropout(h)
for all samples in the e
if self.causal:
batCh. It maSkS the attn_mask = torch.full((len(x), len(x)), -float('Inf'), device=h.device, dtype=h.dtype)
. t k f attn _mask = torch.triu(attn_mask, diagonal=1)
revi n r
p e ous O e S O for layer_norm 1, attention, layer norm 2, feed forward in zip(self.layer norms_1l, self.attentions,

Causal transformers self.layer norms_2, self.feed forwards):

h = layer_norm_1(h)
| love Mom * s cooking X, _ = attention(h, h, h, attn_mask=attn_mask, | need weights=False, key padding mask=padding_mask)
x = self.dropout(x)
' h=x+h
love
Mom h = layer norm 2(h)
' x = feed_forward(h)
x = self.dropout(x)
S h=x+h
cooking 74

return h




Hands-on pre-training

To pretrain our model, we need to add a few elements: a head, a loss and initialize weights.

class TransformerWithLMHead(nn.Module): :
We add these elements © S
H . """ Transformer with a language modeling head on top (tied weights) """
with a pretraining model e, e

: self.config = config
encapSUIatlng our mOdeI T > self.transformer = Transformer(config.embed dim, config.hidden dim, config.num_ embeddings,

config.num max_positions, config.num heads, config.num layers,
config.dropout, causal=not config.mlm)

{ self.lm head = nn.Linear(config.embed_dim, config.num embeddings, bias=False) R
ini self.apply(self.init _weights)

1. A pretraining head on e g i

top of our core model: /' PRI ———

we ChOOSG a |anguage self.lm head.weight = self.transformer.tokens_ embeddings.weight
init_weights(self, module):

mOdeIIng head Wlth tled """ initialize weights - nn.MultiheadAttention is already initalized by PyTorch (xavier)
We|ghts if isinstance(module, (nn.Linear, nn.Embedding, nn.LayerNorm)):
module.weight.data.normal_ (mean=0.0, std=self.config.initializer range)
if isinstance(module, (nn.Linear, nn.LayerNorm)) and module.bias is not None:
\ module.bias.data.zero_() y

non

2. Initialize the weights

def forward(self, x, labels=None, padding mask=None):
""" x has shape [seq length, batch], padding mask has shape [batch, seq length]
hidden_states = self.transformer(x, padding mask)
logits = self.lm head(hidden_states)

3. Define a loss
if labels is not None:

functlon: we ChOOSG a shift logits logits[:-1] if self.transformer.causal else logits
shift labels labels[1l:] if self.transformer.causal else labels

CrOSS-enTI’Opy IOSS on loss_fct = nn.CrossEntropylLoss(ignore_index=-1)
loss = loss_fct(shift logits.view(-1, shift logits.size(-1)), shift labels.view(-1))
current (or next) token return logits, loss - -

predictions return logits 7




Hands-on pre-training

We'll use a pre-defined
open vocabulary
tokenizer: BERT's model
cased tokenizer.

Hyper-parameters taken
from Dai et al., 2018
(Transformer-XL) =
~50M parameters
causal model.

Use a large dataset for
pre-trainining:
WikiText-103 with 103M
tokens (Merity et al.,
2017).

Instantiate our model

and optimizer (Adam) —»

—

—

Now let’s take care of our data and configuration

from pytorch_pretrained bert import BertTokenizer, cached path :

tokenizer = BertTokenizer.from pretrained('bert-base-cased', do_lower_ case=False)

from collections import namedtuple E

Config = namedtuple('Config',
field_names="embed_dim, hidden_dim, num max positions, num_embeddings , num_heads, num layers,"
"dropout, initializer range, batch size, lr, max norm, n_epochs, n_warmup,"
"mlm, gradient accumulation_steps, device, log_dir, dataset_cache")

args = Config( 410 s 2100 7 256 , len(tokenizer.vocab), 10 , 16 Y

0.1 , 0.02 , 16 , 2.5e-4, 1.0 , 50 , 1000 ,

False, 4, "cuda" if torch.cuda.is_available() else "cpu", "./" "./dataset_cache.bin")
dataset_file = cached path("https://s3.amazonaws.com/datasets.huggingface.co/wikitext-103/" :

"wikitext-103-train-tokenized-bert.bin")
datasets = torch.load(dataset_file)

# Convert our encoded dataset to torch.tensors and reshape in blocks of the transformer's input length
for split name in [ 'train', 'valid']:
tensor = torch.tensor(datasets[split_name], dtype=torch.long)
num_sequences = (tensor.size(0) // args.num max positions) * args.num max_positions
datasets[split_name] = tensor.narrow(0, 0, num_sequences).view(-1, args.num max_positions)

model = TransformerWithLMHead(args).to(args.device) E
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
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Hands-on pre-training

And we're done: let’s train! B imcort os :

torch.utils.data import DataLoader
from ignite.engine import Engine, Events
from ignite.metrics import RunningAverage

A Simple update |Oop. from ignite.handlers import ModelCheckpoint

from ignite.contrib.handlers import CosineAnnealingScheduler, create_ lr scheduler with warmup, ProgressBar
We use gradient

dataloader = DataLoader(datasets['train'], batch_size=args.batch_size, shuffle=True)
aCCumU|at|0n tO have a ﬁDefine training function 1
large batc
[seg length, batch]
GPU (>64)| . :
° for batch in self.state.dataloader: :
self.state.batch = batch
. self.state.iteration += 1
Learn | ng I self. fire event(Events.ITERATION_STARTED)
. self.state.output = self. process_function(self, batch)
- linear we self. fire event(Events.ITERATION COMPLETED)
- then cos <
Sq uare rOO| ”ecrease RunningAverage (outpjit_transform=lambda x: x).attach(trainer, "loss")
ProgressBar (persisy=True).attach(trainer, metric_names=['loss'])
100
s # Learning rate sfghedule: linearly warm-up to lr and then decrease the learning rate to zero with cosine
a5 cos_scheduler = JosineAnnealingScheduler(optimizer, 'lr', args.lr, 0.0, len(dataloader) * args.n_epochs)
025 scheduler = cregte_lr_scheduler_with_warmup(cos_scheduler, 0.0, args.lr, args.n_warmup)
B'M trainer.add_evejit_handler(Events.ITERATION_STARTED, scheduler)
) 0 200 400 600 800 1000
# Save checkpgints and training config
training/loss checkpoint_hajidler = ModelCheckpoint(args.log dir, 'checkpoint', save_interval=1, n_saved=5)
trainer.add ¢vent_ handler (Events.EPOCH_COMPLETED, checkpoint_handler, {'mymodel': model})
° torch.save(grgs, os.path.join(args.log _dir, 'training args.bin'))
0 no warm-up

8

o, trainer.run(train_dataloader, max epochs=args.n_epochs)
7

o Go! * .. .

I
i MR ST Epoch [1/50] [365/28874] 1%|| , loss=2.30e+00 [03:43<4:52:22]




Hands-on pre-training — Concluding remarks gf?

A On pretraining

O Intensive: in our case 5h—-20h on 8 V100 GPUs (few days w. 1 V100) to reach a good perplexity =
share your pretrained models

3 Robust to the choice of hyper-parameters (apart from needing a warm-up for transformers)

[ Language modeling is a hard task, your model should not have enough capacity to overfit if your
dataset is large enough = you can just start the training and let it run.

 Masked-language modeling: typically 2-4 times slower to train than LM
We only mask 15% of the tokens = smaller signal

3  For the rest of this tutorial

We don't have enough time to do a full pretraining
= we pretrained two models for you before the tutorial
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a

d Second model:

average_word_ppl

30

First model:

a

(A Trained 15h on 8 V100

Hands-on pre-training — Concluding remarks gf?

exactly the one we built together = a 50M parameters causal Transformer

A Reached a word-level perplexity of 29 on wikitext-103 validation set (quite competitive)

A Same model but trained with a masked-language modeling objective (see the repo)

a
a

Trained 30h on 8 V100

Reached a “masked-word” perplexity of 8.3 on wikitext-103 validation set

Name

Smoothed Value Step
May21_15-47-52_thunder 28.99
© May29_11-08-45_thunder 8.311

20

28.99 270.8k Wed May 22,09:11:55 15h 11m 34s
8.311 545.1k Thu May 30,19:39:34 1d 6h 18m 34s

25

30

Time

35

Relative

Model \ #Params Validation PPL  Test PPL
Grave et al.|(2016b) — LSTM 48.7
Bai et al. (2018) - TCN 45.2
Dauphin et al.[(2016) - GCNN-8 44.9
Grave et al.|(2016b) — LSTM + Neural cache 40.8
|Dauphin et al.[(2016) - GCNN-14 - = 37.2
Merity et al. (2018) — 4-layer QRNN 151IM 32.0 33.0
Rae et al.| (2018) — LSTM + Hebbian + Cache - 29.7 299
Ours — Transformer-XL Standard 151M 23.1 24.0
Baevski & Auli|(2018) — adaptive input® 247T™M 19.8 20.5
Ours — Transformer-XL Large 25T™M 17.7 18.3

Wikitext-103 Validation/Test PPL

79
Dai et al., 2018



http://arxiv.org/abs/1901.02860

[

[1] Introduction

Agenda

AO

[2] Pretraining

o
2%
e T Y

[4] Adaptation

N\

[5] Downstream

Q

[3] What's in a
representation?
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3. What is in a Representation?

Image credit: Caique Lima



Why care about what is in a representation?
A Extrinsic evaluation with downstream tasks @I”\@

[ Complex, diverse with task-specific quirks

A Language-aware representations
A To generalize to other tasks, new inputs
[ Asintermediates for possible improvements to pretraining

[ Interpretability!

O Are we getting our results because of the right reasons? '
A Uncovering biases...
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What to analyze?

1 Embeddings
O Word [ X

O  Contextualized T @ @'@ @

1 Network Activations & ® T T T T

ies @9 - 09
A A A A

A Variations
@  Architecture (RNN / Transformer)

a Layers - Ll '"'

T T T T

d  Pretraining Objectives

E

&



Analysis Method 1: Visualization

Hold the embeddings / network activations static or frozen

e @900 @O

T | | T

00 ©9 - @9
A A A A

Q Q

11

L,

Q
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Visualizing Embedding Geometries

A Plotting embeddings in a lower dimensional i
(2D/3D) space ———— =

d  t-SNE van der Maaten & Hinton, 2008 651 R 1

A PCA projections iy ,
of T ) I .
. « . . . 0.3F I me?zunt ’l /' coy(rj]lt.lecshsess—

[ Visualizing word analogies Mikolov et al. i , /]
2013 . . 021 I' :I lll / /// /’ /- empress
O  Spatial relations il 1o ! madam ¢t 1
I I / / /
- Wking ) Wman + Wwoman ~ uneen o : ‘”eleeW ‘h/e" A /I/ 1
o : l ;woman ,/ 1/ I///
. . . . 0.1+ u earl 5
3 High-level view of lexical semantics L i e ke
.. rother
[ Only a limited number of examples il . # Wy I
@ Connection to other tasks is unclear “oaf : i ST -
Goldberg, 2017 Bl / N : 1
/ !sir I
_05F {man Lking o
—0{5 —0!4 —0?3 —0{2 —0{1 (IJ 011 0{2 0?3 014 015
@mind

Pennington et al., 2014 85
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https://www.tensorflow.org/guide/embedding
https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://www.morganclaypool.com/doi/abs/10.2200/S00762ED1V01Y201703HLT037
https://nlp.stanford.edu/pubs/glove.pdf

Visualizing Neuron Activations

R
2

adford et al.,
01

-
/

d  Neuron activation values correlate
with features / labels

800

Negative reviews
Positive reviews

600

[ Indicates learning of recognizable features
A  How to select which neuron? Hard to scale!

O Interpretable !'= Important (Morcos et al., 2018) I

Cell that is sensitive to the depth of an expression: T 7 Vae of the SentimentNewon ’
#ifdef CONFIG_AUDITSYSCALL
static inline intaUdEENa e as SRS nNENca s s a s TN as k)

Number of Reviews

400

for (1 = ©; 1 < AUDIT_BITMAS

0 KOS ZE: A+ F)
it inaskii] acElTasisielsFcararsisiiEEe)
lnm Karpathy et al., 2016
}
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Visualizing Layer-Importance Weights

d How important is each layer for a given performance on a downstream task?
[ Weighted average of layers

LSTM 4-layer Transformer Gated CNN

[ MNLI
[ NER
[ Parsing

4

A Task and architecture specific!

2 |

0.0 0.2 0.4 0.0 0.2 0.4 0.6 0.00 0.05 0.10 0.15

Also see Tenney et al., ACL 2019

Peters et al.. EMNLP 2018
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https://arxiv.org/pdf/1905.05950.pdf

Visualizing Attention Weights

A Popular in machine translation, or

The The
other seq2seq architectures: L§¥45ﬁﬁ”
3 Q:::Tent between words of source and peﬁ:;7 :?zm
Q Long-distance word-word dependencies ‘1?;4::;“
(intra-sentence attention) el - e
A Sheds light on architectures —— - ot
d  Having sophisticated attention mechanisms - -

. this ;his this ;his
can be a good thing! is éis s s
Q Layer-specific et et et et
are E Eare are are
missing missing missing

[ Interpretation can be tricky R | , |
d  Few examples only - cherry picking? i é‘“ in%“

d  Robust corpus-wide trends? Next! o o5 aion  opiion

<E0S ———_f0s> <€os>/ <€0s>

<pad> m—_ <pad> <pad> oo <pad>

Vaswani et al,, 2017 88
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Analysis Method 2: Behavioral Probes
@

d RNN-based language models
d  number agreement in subject-verb dependencies
[  natural and nonce or ungrammatical sentences
[ evaluate on output perplexity

~

Q

[ RNNSs outperform other non-neural baselines.

[  Performance improves when trained explicitly with syntax

( )

Parts of the river valley have/has
LLL O
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a

Analysis Method 2: Behavioral Probes

@

RNN-based language models (RNN-based)

d  number agreement in subject-verb dependencies
d  For natural and nonce/ungrammatical sentences
[ LM perplexity differences

~

Q

RNNs outperform other non-neural baselines.

Performance improves when trained explicitly with syntax

( )

Probe: Might be vulnerable to co-occurrence biases
O “dogs in the neighborhood bark(s)”

d  Nonce sentences might be too different from original...

AGREE

Parts of the river valley have/has
LLL O
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Analysis Method 3: Classifier Probes

Hold the embeddings / network activations static and

train a simple supervised model on top

llee @o @0 @9
| | | !

L,

Probe classification task $ e 3 ;

(Linear / MLP) L

| | | |
:



Probing Surface-level Features

d Given a sentence, predict properties such as
d  Length
3 Isawordin the sentence?

[  Given a word in a sentence predict properties such as:
d  Previously seen words, contrast with language model
[ Position of word in the sentence

A Checks ability to memorize
@  Well-trained, richer architectures tend to fare better
A Training on linguistic data memorizes better

Zhang et al. 2018:; Liu et al., 2018; Conneau et al., 2018
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https://arxiv.org/abs/1805.01070

Probing Morphology, Syntax, Semantics

0 Morphology Long-distance Tree Subject-Verb Top
number Depth Adreement -
g Constituents
agreement
d  Word-level syntax ’\ T T /
A POS tags, CCG supertags
O Constituent parent, f{fﬂpvliﬁ
grandparent... \VE
O Partial syntax i e N oo
O Dependency relations * I~
p y /\NP NP /1\1;\ NP i NP
D Partial SemantiCS After  encouraging them, he told them goodbye and left for Macedonia
d  Entity Relations l l
 Coreference _
d Roles # Objects Tense of main clause verb

Adi et al., 2017; Conneau et al., 2018; Belinkov et al., 2017; Zhang et al., 2018; Blevins et al., 2018; Tenney et
al. 2019; Liu et al., 2019
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Probing classifier findings

CoVe ELMo GPT
Lex. Full Abs. A | Lex. Full Abs. A \ Lex. cat mix
Part-of-Speech | 85.7 94.0 84| 904 96.7 63 |
Constituents 56.1 81.6 254 | 69.1 84.6 154 | . i POS Supersense ID
Dependencies 750 83.6 86 | 804 939 136 | Pretrained Representation —_—
Entities 88.4 903 19| 920 95.6 35 | Avg. CCG PTB EWT Chunk NER ST GED PS-Role PS-Fxn EF
R e ek s roo | U ELMo (original) best layer  81.58 9331 97.26 9561 90.04 8285 9382 29.37 7544 8487 7320
Non-core roles | 67.7  78.8 111 754 841 88 | ELMo (4-layer) best layer 81.58 93.81 97.31 9560 89.78 82.06 94.18 29.24 7478 8596 73.03
OntoNotes coref. | 72.9 79.2 63 | 753 84.0 8.7 | - ELMo (transformer) best layer 80.97 92.68 97.09 95.13 93.06 81.21 93.78 30.80 72.81 82.24 70.88
SPRI1 737 711 34| 80.1 848 4.7 | © OpenAl transformer best layer 75.01 82.69 93.82 91.28 86.06 58.14 87.81 33.10 66.23 7697 74.03
SPR2 76.6 80.2 36 | 821 8.1 1.0 | - BERT (base, cased) best layer 84.09 93.67 96.95 9521 92.64 8271 93.72 43.30 79.61 87.94 75.11
Winograd coref. | 52.1 543 22| 543 535 08| BERT (large, cased) best layer 85.07 94.28 96.73 95.80 93.64 84.44 9383 4646 79.17 90.13 76.25
Rel. (SemEval) | 51.0 60.6 96 | 557 718 21 | .
Mucro Average | 691 78.1 00 | 754 844 91| Glove (840B.300d) 59.94 71.58 90.49 8393 6228 5322 8092 1494 4079 51.54 49.70
BERT-base BER) Previous staie of the ark 8344 947 9796 9582 9577 9138 9515 39.83 66.89 7829 77.10
F1 Score Abs. A F1 Score (without pretraining)
Lex. cat mix ELMo | Lex. cat mi:
Part-of-Speech | 884 97.0 96.7 00|81 965 969 02 02 Liu et al. NAACL 2019
Constituents 684 837 867 21| 69.0 80.1 87.0 0.4 25
Dependencies 80.1 93.0 95.1 1.1 | 802 915 954 0.3 1.4
Entities 909 96.1 962 06| 91.8 962 96.5 0.3 0.9 Distance Depth
SRL (all) 754 894 913 12765 882 923 1.0 22 Method UUAS DSpr. Root% NSpr.
Core roles 749 914 936 10| 763 899 946 1.0 2.0
Non-core roles | 76.4 84.7 859 18| 769 84.1 86.9 1.0 2.8 LINEAR 48.9 0.58 2.9 0.27
OntoNotes coref. | 74.9 88.7 90.2 63 | 757 89.6 914 1.2 7.4 ELMo0 26.8 0.44 543 0.56
SPRI 79.2 847 86.1 13796 851 858 03 1.0
DECAYO 51.7 0.61 54.3 0.56
SPR2 817 830 83.8 07| 816 832 84.1 0.3 1.0 ;
Winograd coref. | 543 53.6 54.9 14530 538 614 65 78 PROJO 598 073 644 075 Hewittetal., 2019
Rel. (SemEval) 574 783 82.0 42 | 562 776 824 0.5 4.6 ELMOI 77.0 083 865 087
Macro Average | 75.1 84.8 86.3 19| 752 842 813 1.0 29 BERTBASE7 79.8 0.85 88.0 0.87

BERTLARGELS  82.5 0.86 89.4 0.88

BERTLARGEL6 81.7 0.87 90.1 0.89
Tenney et al., ACL 2019 94
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Probing classifier findings

| CoVe ELMo GPT
| Lex. Full Abs. A | Lex. Full Abs. A | Lex. cat mix
Part-of-Speech | 85.7 94.0 84 | 904 96.7 63 |
Constituents 56.1 81.6 254 Supersense ID
Dependencies 750 83.6 8.6 ; ;
EaahalNcoSR-elIRel (1 Contextualized > non-contextualized GED PSRole PSFxn EF
SRL (all) 597 804 207 i i
Lah )37 84 207 J ElspeC|aIIy fon syntactic tasks _ ’ 82 2937 ik 88T 7320
Non-core roles | 67.7 78.8 11.1 . ¥ ¢ b .
OntoNotes coref. | 72.9  79.2 6.3 D C‘O.Ser p‘er ormance O'n Semantlc taS S . 30.80 72.81 82.24 70.88
SPRI 737 771 3.4 d Bidirectional context is important 81 33.10 6623 7697 74.03
SP_R2 76.6 80.2 3.6 4330 79.61 87.94 75.11
Winograd coref. | 52.1 54.3 22 46.46 79.17 90.13  76.25
Rel. (SemEval) | 51.0 60.6 96 |
Macro Average | 69.1 78.1 9.0 | . 1494 40.79 51.54 4970
——eewan 1 BERT (large) almost always gets the highest T
F1 Score
Lex. cat mix performance . .
Part-of-Speech | 884 97.0 96.7 [  Grain of salt: Different contextualized 2019
Constituents 634 837 86.7 : : :
Dependencies | 801 93.0 951 representations were trained on different data,
e 209 el 902 using different architectures...
Core roles 749 914 936
Non-coreroles | 76.4 84.7 85.9 .
OntoNotes coref. | 749 88.7 90.2 6.3 | 757 89.6 914 1.2 7.4 ELMoO 26.8 0.44 54.3 0.56
SPR1 792 847 86.1 13796 851 858 03 1.0
DECAY0 517 061 543 056
SPR2 81.7 830 838 07 | 816 832 841 0.3 1.0 . .
Winograd coref. | 543 53.6 54.9 14530 538 614 65 7.8 PrOJO 598 073 e44 075 Hewittet. al., 2019
Macro Average | 75.1 84.8 86.3 1.9 752 842 873 1.0 2.9 BERTBASE7 79.8 0.85 88.0 0.87

BERTLARGE15 82.5 0.86 89.4 0.88
BERTLARGE16 81.7 0.87 90.1 0.89

Tenney et al., ACL 2019 95
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(a) ELMo (original)

||
L ]
Layer2 [0 [ || [ |

(b) ELMo (4-layer)

|

Layer 0
|||
H =

Layer 0

RAINIRONRRN (/1777 U Layer 4 = = --
\\§§ \\\§ : (c) ELMo (transformer)
\ = £l o Layer 0 e == =
%commux ™ Erts \Aa er:rr;i;(;dtlbzm Obc layers ddmixedAe Layer 6 i Eree——— l-” -—=--_
. L . (d) OpenAl transformer
3  RNN layers: General linguistic properties e
O  Lowest layers: morphology Layen 12—
O Middle layers: syntax ayer (6) BERT (hiise, easec)
d  Highest layers: Task-specific semantics T e
d Transformer layers: oo e DA S (TR RS ER)
d  Different trends for different tasks; middle-heavy _— = _—
O Also see Tenney et. al., 2019 C —
Lower Pe:l‘formance Higher Pelrformance

Fig. from Liu et al. (NAACL 2019)
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Probing: Pretraining Objectives

Dependency Parsing Semantic Role Labeling

A Language modeling
outperforms other
unsupervised and supervised

objectives.
A Machine Translation
[ Dependency Parsing
A Skip-thought

[ Low-resource settings (size of .«

training data) might result in
Opposlte ‘trends ovs //:etersetaol.52018~aer [cs.CL]

0.4 ¥
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Zhang et al., 2018; Blevins et al., 2018; Liu et al., 2019;
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What have we learnt so far?

(d Representations are predictive of certain linguistic phenomena:
A Alignments in translation, Syntactic hierarchies

a  Pretraining with and without syntax:
[  Better performance with syntax
O But without, some notion of syntax at least (Williams et al. 2018)

[  Network architectures determine what is in a representation

O Syntax and BERT Transformer (Tenney et al., 2019; Goldberg, 2019)
d Different layer-wise trends across architectures
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Open questions about probes /

1 What information should a good probe look for?
A Probing a probe!

A What does probing performance tell us?

[d  Hard to synthesize results across a variety of baselines...

[ Can introduce some complexity in itself
[ linear or non-linear classification.
[ behavioral: design of input sentences

1 Should we be using probes as evaluation metrics?
[ might defeat the purpose...
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Analysis Method 4: Model Alterations (((((l)))
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Figure 5: Heatmap of word importance (computed using Eq. 1) in sentiment analysis.

Lietal., 2016
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https://arxiv.org/abs/1612.08220

So, what is in a representation?

([ Depends on how you look at it!

d  Visualization:
d  bird’s eye view
d  few samples - might call to mind cherry-picking

Probes:
[ discover corpus-wide specific properties
 may introduce own biases...

d  Network ablations:
A great for improving modeling,
[ could be task specific

A Analysis methods as tools to aid model development!
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Very current and ongoing!

Citation counts by year in "Part 3. What do
representations learn"?

B Num. citations

-2015

2016

2017

2018

2019

First column for citations in and
0 5 10 15 20  before 2015 102



What's next?

SentLen

WordContent 0.6
A Linguistic Awareness Treeepfh 04
TopConst i5
BShift
Tense 0.0
d Interpretability ' SubjNumm 0.2
ObjNum
-0.4
SOMO
Interpretability + transferability to Sy ~06

& X P O L LK R N
W && AP & c)\d‘ O)\cf &2 (;\(’x

downstream tasks is key

Conneau et al., 2018

=> Up next!
Correlation of probes to downstream tasks



https://arxiv.org/abs/1805.01070

[ Suite of word-based and word-pair-based tasks: Liu et al. 2019

https://github.com/nelson-liu/contextual-repr-analysis

A Structural Probes: Hewitt & Manning 2019

A Overview of probes : Belinkov & Glass, 2019
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https://homes.cs.washington.edu/~nfliu/papers/liu+gardner+belinkov+peters+smith.naacl2019.pdf
https://github.com/nelson-liu/contextual-repr-analysis
https://nlp.stanford.edu/pubs/hewitt2019structural.pdf
https://arxiv.org/abs/1812.08951

That’s all for this time
69
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