
Yoav Goldberg

NLPL Winter School 2020

Trying to Understand
 Neural Models

for Language Processing

What do our models learn?

Rule-based 
systems

Corpus-based 
statistics

Machine  
Learning

1950s--1990s

1990s--2000s

2000s--2014

How do we do NLP?

Deep  
Learning

2014--2020

Rule-based 
systems

Corpus-based 
statistics

Machine  
Learning

1950s--1990s

1990s--2000s

2000s--2014

How do we do NLP?
Li

ng
ui

st
ic

s
ex

pe
rti

se

Machine Learning expertise

Deep  
Learning

2014--2020

Rule-based 
systems

Corpus-based 
statistics

Machine  
Learning

1950s--1990s

1990s--2000s

2000s--2014

Li
ng

ui
st

ic
s

ex
pe

rti
se

Machine Learning expertise

How do we do NLP?

Transparent Black boxDebugability

Deep  
Learning

2014--2020

Rule-based 
systems

Corpus-based 
statistics

Machine  
Learning

1950s--1990s

1990s--2000s

2000s--2014

Li
ng

ui
st

ic
s

ex
pe

rti
se

Machine Learning expertise

How do we do NLP?

Transparent Black box

Little Lots

Debugability
Needed labeled data

Deep  
Learning

2014--2020

Rule-based 
systems

Corpus-based 
statistics

Machine  
Learning

1950s--1990s

1990s--2000s

2000s--2014

Li
ng

ui
st

ic
s

ex
pe

rti
se

Machine Learning expertise

How should we do NLP?

Transparent Black box

Little Lots

Debugability
Needed labeled data

Deep  
Learning

2014--2020

Rule-based 
systems

Corpus-based 
statistics

Machine  
Learning

Deep  
Learning

1950s--1990s

1990s--2000s

2000s--2014

2014--2020

Li
ng

ui
st

ic
s

ex
pe

rti
se

Machine Learning expertise

How should we do NLP?

Transparent Black box

Little Lots

Debugability
Needed labeled data

I want to be there

2021++

Rule-based 
systems

Corpus-based 
statistics

Machine  
Learning

Deep  
Learning

1950s--1990s

1990s--2000s

2000s--2014

2014--2020

Li
ng

ui
st

ic
s

ex
pe

rti
se

Machine Learning expertise

NLP Tomorrow

Transparent Black box

Little Lots

Debugability
Needed labeled data

2021++

Humans writing rules
aided by ML/DL

Resulting in transparent
and debuggable models

Rule-based 
systems

Corpus-based 
statistics

Machine  
Learning

Deep  
Learning

1950s--1990s

1990s--2000s

2000s--2014

2014--2020

Li
ng

ui
st

ic
s

ex
pe

rti
se

Machine Learning expertise

This lecture

Transparent Black box

Little Lots

Debugability
Needed labeled data

2021++

NLP Today

NLP Today
RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

NLP Today

Chris Manning 
April 2017

NLP Today

Chris Manning 
April 2017

NLP Today

NLP Today

input text

output

NLP Today

input text

output

NLP Today

Encode

input text

output

Decode

NLP Today

Encode

input text

output

Decode

Transform

NLP Today

Black Box

input text

output

Black Box

Black Box

NLP Today

Black Box

input text

output

Black Box

Black Box

Black Boxes

• How do these black boxes work?

• What can they learn / represent?

• What did they learn / represent?

Black Boxes

• How do these black boxes work?

• What can they learn / represent?

• What did they learn / represent?

Many research Qs

Q2: What is encoded/captured in a vector?

Q3: what kinds of linguistic structures  
 can be captured by an RNN?

Q1: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Q5: What is the representation power of diff archs?

Q6: Extracting a discrete reps from a trained model.

Q4: when do models fail? what did they *really* learn?

• How do these black boxes work?

• What can they learn / represent?

• What did they learn / represent?

Q1: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Many research Qs

The learned functions are complex.

Our intuitions are often wrong.

Intro to 1D CNN

the service was not goodveryactual

the service was not goodveryactual

dot
filter

the service was not goodveryactual

dot

=

filter

the service was not goodveryactual

dot

=
the

 ac
tua

l

filter

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

the service was not goodveryactual

dot
=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

the service was not goodveryactual

dot

=
the

 ac
tua

l

the service was not goodveryactual

dot

=
the

 ac
tua

l

another filter

the service was not goodveryactual

dot

=
the

 ac
tua

l

another filter

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

tanh() tanh() tanh() tanh() tanh() tanh()

(usually also add non linearity)

the service was not goodveryactual

(can have larger filters)

dot

=
the

 ac
tua

l

tanh()

the service was not goodveryactual

dot

=

the
 ac

tua
l se

rvi
ce

tanh()

(can have larger filters)

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

we have the ngram vectors. now what?

"Pooling"

Combine K vectors into a single vector

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

sum/avg pooling

+ + + + + =

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

max max max max max =

average pooling

max pooling
(max in each coordinate)

the service was not goodveryactual

max max max max max =

tanh(W⇤+ b)

U⇤

softmax(⇤)

prediction

MLP

train end-to-end for some task
(train the MLP, the filter matrix, and the embeddings together)

the service was not goodveryactual

max max max max max =

ngram detectors

the service was not goodveryactual

max max max max max =

each dimension comes from a specific ngram

ngram detectors

the service was not goodveryactual

max max max max max =

the filters act as "ngram detectors"
assigning high values to important ngrams

ngram detectors

Textbook wisdom:

Textbook wisdom:

nope.

max from corpus ngrams max in each word

max from corpus ngrams max in each word

max from corpus ngrams max in each word

WHY????

only some of the words maximize their slot scores

filters are not homogenous
a filter may detect multiple families of ngrams

filters are not homogenous
a filter may detect multiple families of ngrams

complex behavior.

300 filters --> more than 300 ngram types.

Textbook wisdom 2:

filters detect the presence
of specific ngrams / words

slot #2 is a wildcard slot?

slot #2 is a wildcard slot?

nope.

slot #2 is a wildcard slot?

nope.

Strong negative score

slot #2 is detecting
the absence of the word not

Strong negative score

Each filter detects
a family of ngrams

Filters detect presence

1D ConvNets are Complex
Intuition

Each filter detects
a family of ngrams

Filters detect presence

Some filters detect
multiple families of ngrams

Some filters detect absence

1D ConvNets are Complex
Intuition Real World

Q1: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Q1: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

also look at:

Q2: What is encoded/captured in a vector?

Q3: what kinds of linguistic structures  
 can be captured by an RNN?

Q1: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Q4: when do models fail? what can't they do?

Q5: What is the representation power of diff archs?

Q6: Extracting a discrete reps from a trained model.

Q2: What is encoded/captured in a vector?

Q2: What is encoded/captured in a vector?

Methodology: can you train a classifier to predict
X from the representation?

Q2: What is encoded/captured in a vector?

What's in a sentence?
To fully reconstruct a sentence, we need to know:

• How many words?

• Which words?

• What order?

Compare different sentence representations based
on their preservation of these properties.

Formulate as  
Prediction Tasks

Sentence Length Word order

Which words?

Formulate as  
Prediction Tasks

Input:
Sentence encoding.
Task:
Predict length (8 bins)

Sentence Length

Which words?

Word order

Formulate as  
Prediction Tasks

Input:
Sentence encoding.
Task:
Predict length (8 bins)

Sentence Length

Input:
Sentence encoding s.
Word encoding a.
Task:
Does s contain a?

Which words?

Word order

Formulate as  
Prediction Tasks

Input:
Sentence encoding.
Task:
Predict length (8 bins)

Sentence Length

Input:
Sentence encoding s.
Word encoding a.
Task:
Does s contain a?

Which words?

Input:
Sentence encoding s.
Word encoding a.
Word encoding b.
Task:
Does a appear in s
before b?

Word order

Some Results
Encoder (LSTM)

Input:
Sentence encoding.
Task:
Predict length (binned)

Sentence Length
dim acc
100
300
500
750
1000Baseline 22%

Some Results
Encoder (LSTM)

Input:
Sentence encoding.
Task:
Predict length (binned)

Sentence Length
dim acc
100
300
500
750
1000Baseline 22%

50%
80%
82%
79%
83%

Some Results
Encoder (LSTM)

Input:
Sentence encoding.
Task:
Predict length (binned)

Sentence Length
dim acc
100
300
500
750
1000

CBOW

50%
80%
82%
79%
83%Baseline 22%

??

CBOW (Continuous-Bag-of-Words)

• Represent each word in the sentence as a vector (word2vec)
• The average of these vectors is the sentence vector

+ + + + + =)(/6

The fox jumped over the fence sentence vector

Some Results
Encoder (LSTM)

Input:
Sentence encoding.
Task:
Predict length (binned)

Sentence Length
dim acc
100
300
500
750
1000

CBOW

50%
80%
82%
79%
83%Baseline 22%

??

Some Results
Encoder (LSTM)

Input:
Sentence encoding.
Task:
Predict length (binned)

Sentence Length
dim acc
100
300
500
750
1000

CBOW

50%
80%
82%
79%
83%Baseline 22%

45%
49%
57%
60%
60%

Some Results
Encoder (LSTM)

Input:
Sentence encoding.
Task:
Predict length (binned)

Sentence Length
dim acc
100
300
500
750
1000

CBOW

surprisingly high accuracy for 8-class classification,
considering that CBOW is an averaged representation

50%
80%
82%
79%
83%Baseline 22%

45%
49%
57%
60%
60%

Some Results
Encoder (LSTM)

Input:
Sentence encoding.
Task:
Predict length (binned)

Sentence Length
dim acc
100
300
500
750
1000

CBOW

surprisingly high accuracy for 8-class classification,
considering that CBOW is an averaged representation

50%
80%
82%
79%
83%Baseline 22%

45%
49%
57%
60%
60%

CBOW encodes length??

Some Results
Encoder (LSTM)

Input:
Sentence encoding.
Task:
Predict length (binned)

Sentence Length
dim acc
100
300
500
750
1000

CBOW

surprisingly high accuracy for 8-class classification,
considering that CBOW is an averaged representation

50%
80%
82%
79%
83%Baseline 22%

45%
49%
57%
60%
60%

CBOW encodes length??

reviewer 2:

The paper reads very well, but
a) I do not understand the motivation, and
b) the experiments seem flawed.

The average over CBOW word embeddings should
never encode for sentence length. The fact
that you learn reasonably well with
these representations, suggest overfitting.
This may well be, since Wikipedia
contains tons of duplicate or near-duplicate
sentences.

How does CBOW
 encode length?

• Maybe some words are predictive of longer
sentences?

How does CBOW
 encode length?

• Maybe some words are predictive of longer
sentences?

6

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

Figure 3: Content accuracy vs. sentence length for selected
models.

6.3 Word Order Experiments

Figure 4 shows the performance of the different
models on the order test. The LSTM encoders are
very capable of encoding word order, with LSTM-
1000 allowing the recovery of word order in 91% of
the cases. Similar to the length test, LSTM order
prediction accuracy is only loosely correlated with
BLEU scores. It is worth to notice that increasing
the representation size helps the LSTM-encoder to
better encode order information.

Figure 4: Order accuracy vs. embedding size for different
models; ED BLEU scores given for reference.

Surprisingly, the CBOW encodings manage to
reach an accuracy of 70% on the word order task,
20% above the baseline. This is remarkable as, by
definition, the CBOW encoder does not attempt to
preserve word order information. One way to ex-
plain this is by considering distribution patterns of
words in natural language sentences: some words
tend to appear before others. In the next section we
analyze the effect of natural language on the differ-
ent models.

7 Importance of “Natural Languageness”
Natural language imposes many constraints on sen-
tence structure. To what extent do the different en-
coders rely on specific properties of word distribu-
tions in natural language sentences when encoding
sentences?

To account for this, we perform additional exper-
iments in which we attempt to control for the effect
of natural language.

How can CBOW encode sentence length? Is the
ability of CBOW embeddings to encode length re-
lated to specific words being indicative of longer or
shorter sentences? To control for this, we created a
synthetic dataset where each word in each sentence
is replaced by a random word from the dictionary
and re-ran the length test for the CBOW embeddings
using this dataset. As Fig. 5 shows, this only leads
to a slight decrease in accuracy, indicating that the
identity of the words is not the main component in
CBOW’s success at predicting length.

Figure 5: Length accuracy for different CBOW sizes on nat-
ural and synthetic (random words) sentences.

An alternative explanation for CBOW’s ability to
encode sentence length is given by considering the
norms of the sentence embeddings. Indeed, Fig. 6
shows that the embedding norm decreases as sen-
tences grows longer. We believe this is one of the
main reasons for the strong CBOW results.

Figure 6: Average embedding norm vs. sentence length for
CBOW with an embedding size of 300.

English sentences
Synthetic sentences
with random words

How does CBOW
 encode length?

• Maybe some words are predictive of longer
sentences?

6

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

Figure 3: Content accuracy vs. sentence length for selected
models.

6.3 Word Order Experiments

Figure 4 shows the performance of the different
models on the order test. The LSTM encoders are
very capable of encoding word order, with LSTM-
1000 allowing the recovery of word order in 91% of
the cases. Similar to the length test, LSTM order
prediction accuracy is only loosely correlated with
BLEU scores. It is worth to notice that increasing
the representation size helps the LSTM-encoder to
better encode order information.

Figure 4: Order accuracy vs. embedding size for different
models; ED BLEU scores given for reference.

Surprisingly, the CBOW encodings manage to
reach an accuracy of 70% on the word order task,
20% above the baseline. This is remarkable as, by
definition, the CBOW encoder does not attempt to
preserve word order information. One way to ex-
plain this is by considering distribution patterns of
words in natural language sentences: some words
tend to appear before others. In the next section we
analyze the effect of natural language on the differ-
ent models.

7 Importance of “Natural Languageness”
Natural language imposes many constraints on sen-
tence structure. To what extent do the different en-
coders rely on specific properties of word distribu-
tions in natural language sentences when encoding
sentences?

To account for this, we perform additional exper-
iments in which we attempt to control for the effect
of natural language.

How can CBOW encode sentence length? Is the
ability of CBOW embeddings to encode length re-
lated to specific words being indicative of longer or
shorter sentences? To control for this, we created a
synthetic dataset where each word in each sentence
is replaced by a random word from the dictionary
and re-ran the length test for the CBOW embeddings
using this dataset. As Fig. 5 shows, this only leads
to a slight decrease in accuracy, indicating that the
identity of the words is not the main component in
CBOW’s success at predicting length.

Figure 5: Length accuracy for different CBOW sizes on nat-
ural and synthetic (random words) sentences.

An alternative explanation for CBOW’s ability to
encode sentence length is given by considering the
norms of the sentence embeddings. Indeed, Fig. 6
shows that the embedding norm decreases as sen-
tences grows longer. We believe this is one of the
main reasons for the strong CBOW results.

Figure 6: Average embedding norm vs. sentence length for
CBOW with an embedding size of 300.

English sentences
Synthetic sentences
with random words

We do have an explanation!

6

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

Figure 3: Content accuracy vs. sentence length for selected
models.

6.3 Word Order Experiments

Figure 4 shows the performance of the different
models on the order test. The LSTM encoders are
very capable of encoding word order, with LSTM-
1000 allowing the recovery of word order in 91% of
the cases. Similar to the length test, LSTM order
prediction accuracy is only loosely correlated with
BLEU scores. It is worth to notice that increasing
the representation size helps the LSTM-encoder to
better encode order information.

Figure 4: Order accuracy vs. embedding size for different
models; ED BLEU scores given for reference.

Surprisingly, the CBOW encodings manage to
reach an accuracy of 70% on the word order task,
20% above the baseline. This is remarkable as, by
definition, the CBOW encoder does not attempt to
preserve word order information. One way to ex-
plain this is by considering distribution patterns of
words in natural language sentences: some words
tend to appear before others. In the next section we
analyze the effect of natural language on the differ-
ent models.

7 Importance of “Natural Languageness”
Natural language imposes many constraints on sen-
tence structure. To what extent do the different en-
coders rely on specific properties of word distribu-
tions in natural language sentences when encoding
sentences?

To account for this, we perform additional exper-
iments in which we attempt to control for the effect
of natural language.

How can CBOW encode sentence length? Is the
ability of CBOW embeddings to encode length re-
lated to specific words being indicative of longer or
shorter sentences? To control for this, we created a
synthetic dataset where each word in each sentence
is replaced by a random word from the dictionary
and re-ran the length test for the CBOW embeddings
using this dataset. As Fig. 5 shows, this only leads
to a slight decrease in accuracy, indicating that the
identity of the words is not the main component in
CBOW’s success at predicting length.

Figure 5: Length accuracy for different CBOW sizes on nat-
ural and synthetic (random words) sentences.

An alternative explanation for CBOW’s ability to
encode sentence length is given by considering the
norms of the sentence embeddings. Indeed, Fig. 6
shows that the embedding norm decreases as sen-
tences grows longer. We believe this is one of the
main reasons for the strong CBOW results.

Figure 6: Average embedding norm vs. sentence length for
CBOW with an embedding size of 300.

How does CBOW
 encode length?

6

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

Figure 3: Content accuracy vs. sentence length for selected
models.

6.3 Word Order Experiments

Figure 4 shows the performance of the different
models on the order test. The LSTM encoders are
very capable of encoding word order, with LSTM-
1000 allowing the recovery of word order in 91% of
the cases. Similar to the length test, LSTM order
prediction accuracy is only loosely correlated with
BLEU scores. It is worth to notice that increasing
the representation size helps the LSTM-encoder to
better encode order information.

Figure 4: Order accuracy vs. embedding size for different
models; ED BLEU scores given for reference.

Surprisingly, the CBOW encodings manage to
reach an accuracy of 70% on the word order task,
20% above the baseline. This is remarkable as, by
definition, the CBOW encoder does not attempt to
preserve word order information. One way to ex-
plain this is by considering distribution patterns of
words in natural language sentences: some words
tend to appear before others. In the next section we
analyze the effect of natural language on the differ-
ent models.

7 Importance of “Natural Languageness”
Natural language imposes many constraints on sen-
tence structure. To what extent do the different en-
coders rely on specific properties of word distribu-
tions in natural language sentences when encoding
sentences?

To account for this, we perform additional exper-
iments in which we attempt to control for the effect
of natural language.

How can CBOW encode sentence length? Is the
ability of CBOW embeddings to encode length re-
lated to specific words being indicative of longer or
shorter sentences? To control for this, we created a
synthetic dataset where each word in each sentence
is replaced by a random word from the dictionary
and re-ran the length test for the CBOW embeddings
using this dataset. As Fig. 5 shows, this only leads
to a slight decrease in accuracy, indicating that the
identity of the words is not the main component in
CBOW’s success at predicting length.

Figure 5: Length accuracy for different CBOW sizes on nat-
ural and synthetic (random words) sentences.

An alternative explanation for CBOW’s ability to
encode sentence length is given by considering the
norms of the sentence embeddings. Indeed, Fig. 6
shows that the embedding norm decreases as sen-
tences grows longer. We believe this is one of the
main reasons for the strong CBOW results.

Figure 6: Average embedding norm vs. sentence length for
CBOW with an embedding size of 300.

How does CBOW
 encode length?

(Why?)

Some Results
Encoder (LSTM)

dim acc
100
300
500
750
1000

CBOW
Input:
Sentence encoding s.
Word encoding a.
Task:
Does s contain w?

Which words?

Some Results
Encoder (LSTM)

dim acc
100
300
500
750
1000

70%
75%
76%
80%
75%

CBOW
Input:
Sentence encoding s.
Word encoding a.
Task:
Does s contain w?

Which words?

Some Results
Encoder (LSTM)

dim acc
100
300
500
750
1000

70%
75%
76%
80%
75%

CBOW
Input:
Sentence encoding s.
Word encoding a.
Task:
Does s contain w?

Which words?

higher dim not necessarily better!
(reconstruction BLEU does improve in higher dims)

Some Results
Encoder (LSTM)

dim acc
100
300
500
750
1000

70%
75%
76%
80%
75%

CBOW
Input:
Sentence encoding s.
Word encoding a.
Task:
Does s contain w?

Which words?

higher dim not necessarily better!
reconstruction BLEU does improve in higher dims

power moves to the decoder (which we throw away)

Some Results
Encoder (LSTM)

dim acc
100
300
500
750
1000

70%
75%
76%
80%
75%

CBOW

84%
88%
60%
60%
60%

Input:
Sentence encoding s.
Word encoding a.
Task:
Does s contain w?

Which words?

Some Results
Encoder (LSTM)

dim acc
100
300
500
750
1000

70%
75%
76%
80%
75%

CBOW
Input:
Sentence encoding s.
Word encoding a.
Task:
Does s contain w?

Which words?

cbow better at preserving sentence words

84%
88%
60%
60%
60%

Some Results
Encoder (LSTM)

dim acc
100
300
500
750
1000

79%
83%
85%
86%
90%

CBOW
Input:
Sentence encoding s.
Word encoding a.
Word encoding b.
Task:
Does a appear in s
before b?

Word order

Some Results
Encoder (LSTM)

dim acc
100
300
500
750
1000

CBOW

70%
70%
66%
66%
66%

Input:
Sentence encoding s.
Word encoding a.
Word encoding b.
Task:
Does a appear in s
before b?

Word order

79%
83%
85%
86%
90%

Some Results
Encoder (LSTM)

dim acc
100
300
500
750
1000

CBOW

70%
70%
66%
66%
66%

Input:
Sentence encoding s.
Word encoding a.
Word encoding b.
Task:
Does a appear in s
before b?

Word order

wait what?
79%
83%
85%
86%
90%

Some Results
Encoder (LSTM)

dim acc
100
300
500
750
1000

CBOW
Input:
Sentence encoding s.
Word encoding a.
Word encoding b.
Task:
Does a appear in s
before b?

Word order

70%
70%
66%
66%
66%

wait what?

what if we trained on words alone,
without sentence representation?

79%
83%
85%
86%
90%

Some Results
Encoder (LSTM)

dim acc
100
300
500
750
1000

CBOW
Input:
Sentence encoding s.
Word encoding a.
Word encoding b.
Task:
Does a appear in s
before b?

Word order

79%
83%
85%
86%
90%

70%
70%
66%
66%
66%

wait what?
67%
67%
67%
67%
65%

67%
68%
65%
64%
64%

what if we trained on words alone,
without sentence representation?

Some Results
Encoder (LSTM)

dim acc
100
300
500
750
1000

CBOW
Input:
Sentence encoding s.
Word encoding a.
Word encoding b.
Task:
Does a appear in s
before b?

Word order

79%
83%
85%
86%
90%

70%
70%
66%
66%
66%

wait what?
67%
67%
67%
67%
65%

67%
68%
65%
64%
64%

word identities alone get you quite far,
but cbow still informative re order!

Does it Learn to Represent English

or Just Sequences?

• We use the trained encoders
• But evaluate them on permuted sentences

encode(“fence over jumped the fox The”)

Does fence appear before fox?

Does it Learn to Represent English

or Just Sequences?

7

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.

Length Prediction

cbow

LSTM

7

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.

Does it Learn to Represent English

or Just Sequences?

Content Prediction

cbow

LSTM

Does it Learn to Represent English

or Just Sequences?

7

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.

Order Prediction

7

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.

7

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.

cbow

LSTM

cbow permuted

Does it Learn to Represent English

or Just Sequences?

7

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.

7

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.

7

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.

auto-encoder LSTM
does not really care what it encodes.

a generic sequence encoder.

Does it Learn to Represent English

or Just Sequences?

7

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.

7

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.

7

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.

auto-encoder LSTM
does not really care what it encodes.

a generic sequence encoder.

nat-lang information is in the decoder.

Skip-Thought Vectors

Does it Learn to Represent English

or Just Sequences?

Content OrderLength

Does it Learn to Represent English

or Just Sequences?

Content OrderLength

Skip-thought encoders do care
about the sequence they encode

What did we learn?
• LSTM-encoder vectors encode length.

• If you care about word identity, prefer CBOW.

• If you care about word order, use LSTM.

• Can recover quite a bit of order also from CBOW.

• LSTM Encoder doesn't rely on language-naturalness

• Skip-thoughts encoder does rely on it.

Methodology: can you train a classifier to predict
X from the representation?

Q2: What is encoded/captured in a vector?

Methodology: can you train a classifier to predict
X from the representation?

Q2: What is encoded/captured in a vector?

Methodology: can you train a classifier to predict
X from the representation?

Q2: What is encoded/captured in a vector?

work performed early 2016

Rejected from pretty much all* NLP venues

*that matter

Methodology: can you train a classifier to predict
X from the representation?

Q2: What is encoded/captured in a vector?

work performed early 2016

Rejected from pretty much all* NLP venues

*that matter

reviewer 2:

The paper reads very well, but
a) I do not understand the motivation, and
b) the experiments seem flawed.

Q2: What is encoded/captured in a vector?

work performed early 2016

JAIR

Q2: What is encoded/captured in a vector?

JAIR, NIPS workshop 2016

~with us

Q2: What is encoded/captured in a vector?

JAIR, NIPS workshop 2016

~with us

much better name!

Q2: What is encoded/captured in a vector?

JAIR, NIPS workshop 2016

~with us

much better name!

RepEval workshop
2016

Q2: What is encoded/captured in a vector?

NIPS 2017

Q2: What is encoded/captured in a vector?

NIPS 2017

IJCNLP 2017

Q2: What is encoded/captured in a vector?

ACL 2018

Q2: What is encoded/captured in a vector?
2 years later...

ACL 2018

ACL 2018

Q2: What is encoded/captured in a vector?
2 years later...

ACL 2018

ACL 2018

many more works in xACL / BlackBox NLP

Q2: What is encoded/captured in a vector?
2 years later...

ACL 2018

ACL 2018

(ML) workshops --> ML --> non-ACL NLP --> ACL (NAACL, EMNLP...)

is top-tier NLP too conservative?

Q2: What is encoded/captured in a vector?

many more works in xACL / BlackBox NLP

2 years later...

ACL 2018

ACL 2018

(ML) workshops --> ML --> non-ACL NLP --> ACL (NAACL, EMNLP...)

is top-tier NLP too conservative?

Q2: What is encoded/captured in a vector?

many more works in xACL / BlackBox NLP

You will become reviewers soon. Think about it.

Do I still believe  
in probing tasks?

• Sort of.

• "BERT network can do SRL with 78%"

• Useless.

• "BERT network does 78% SRL in layer 3, and 63% in layer 8"

• Much better.

• They are interesting for comparing different networks, if we
manage to see a difference.

• But, hard to interpret the results.

Do I still believe  
in probing tasks?

• If our classifier managed to extract property X, does
this mean the network actually uses property X?

• If our classifier did not manage to recover property
X, does this mean the network does not use this
property?

• consider: the last layer in a multi-layer network for
sentiment, is not predictive of the presence of
negation words. Does this mean the network
cannot do negation?

Do I still believe  
in probing tasks?

• Important technique, but take with a grain of salt.

Understanding LSTMs
Q3: what kinds of linguistic structures  
 can be captured by an RNN?

Understanding LSTMs
Q3: what kinds of linguistic structures  
 can be captured by an RNN?

The case for Syntax

the boy kicks the ball
the boys kick the ball

• Some natural-language phenomena are indicative
of hierarchical structure.

• For example, subject verb agreement.

The case for Syntax

the boy with the white shirt with the blue collar kicks the ball
the boys with the white shirts with the blue collars kick the ball

• Some natural-language phenomena are indicative
of hierarchical structure.

• For example, subject verb agreement.

The case for Syntax

the boy (with the white shirt (with the blue collar)) kicks the ball
the boys (with the white shirts (with the blue collars)) kick the ball

• Some natural-language phenomena are indicative
of hierarchical structure.

• For example, subject verb agreement.

The case for Syntax

the boy (with the white shirt (with the blue collar)) kicks the ball
the boys (with the white shirts (with the blue collars)) kick the ball

• Some natural-language phenomena are indicative
of hierarchical structure.

• For example, subject verb agreement.

nsubj

Can a sequence LSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral rationalism are plato and immanuel kant .

Can a sequence LSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

replace rare words with their POS

Can a sequence LSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

choose a verb with a subject

Can a sequence LSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral NN ____

cut the sentence at the verb

Can a sequence LSTM
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have
defended moral NN ____

binary prediction task

Can a sequence LSTM
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have
defended moral NN ____

Can a sequence LSTM
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have
defended moral NN ____

Can a sequence LSTM
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have
defended moral NN ____

Can a sequence LSTM
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have
defended moral NN ____

Need to learn the concept of number.
in order to answer:

Need to identify the subject (ignoring irrelevant words)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Predict

Binary Prediction Task

have defended moral NN

plural / singular

......

Somewhat Harder Task

Somewhat Harder Task

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

choose a verb with a subject

Somewhat Harder Task

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

choose a verb with a subject

some prominent figures in the history of philosophy who have
defended moral NN is plato and immanuel kant .

and flip its number.

Somewhat Harder Task

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

some prominent figures in the history of philosophy who have
defended moral NN is plato and immanuel kant .

V

X

can the LSTM learn to
distinguish good from bad sentences?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Predict

Sentence Level Task

boy kicks the ball

V

the

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Predict

Sentence Level Task

boy kick the ball

X

the

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

predicts number with 99% accuracy.
...but most examples are very easy

(look at last noun).

(a) (b) (c)

(d) (e) (f)

Figure 2: (a-d) Error rates of the LSTM number prediction model as a function of: (a) distance between
the subject and the verb, in dependencies that have no intervening nouns; (b) presence and number of last
intervening noun; (c) count of attractors in dependencies with homogeneous intervention; (d) presence of
a relative clause with and without an overt relativizer in dependencies with homogeneous intervention and
exactly one attractor. All error bars represent 95% binomial confidence intervals.

(e-f) Additional plots: (e) count of attractors per dependency in the corpus (note that the y-axis is on a log
scale); (f) embeddings of singular and plural nouns, projected onto their first two principal components.

order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

predicts number with 99% accuracy.
...but most examples are very easy

(look at last noun).

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

predicts number with 99% accuracy.
...but most examples are very easy

(look at last noun).

when restricted to cases
of at least one intervening noun:

97% accuracy

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

learns number of nouns

5

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

Figure 3: Embeddings of singular nouns (in red) and
plural nouns (in blue) in the LSTM number predic-
tion network, projected onto the first two principal
components of the embedding space.

Figure 4

Figure 5: Targeted training: last intervening (note
that the “none” category is missing – all dependencies
had at least one intervening noun).

4 Targeted training

The network’s degraded performance on dependen-
cies with agreement attractors showed that it did not
extract the correct generalization from the training
data. At the same time, its overall accuracy was very
high. This suggests that most dependencies in the
test set do not contain attractors that can trip up the
network. An analysis of the corpus confirms this hy-
pothesis: the majority of dependencies in language
do not have any attractors at all, and there is a very
small number of dependencies that have multiple at-
tractors (Figure 4). As such, the network can achieve
high performance using heuristics that break in diffi-
cult cases.

The most natural training regime includes sentence
types in the training set in proportion to their fre-
quency in the language, as we did in our first exper-
iments and as is the case when an RNN language
model is trained on a corpus. Given the skew in the
distribution, however, we repeated our verb number
prediction experiment, this time training the model
only on dependencies that had at least one noun that
intervened between the subject and the verb (either
an agreement attractor or a noun with the same num-
ber as the subject). Our methodology was identical,
with the exception of doubling the proportion of train-
ing sentences in the split, since the full corpus was
smaller (226K dependencies).

The overall error rate was low, but higher than
before (2.5% compared to 0.9%). Figure 5 shows
that the errors are more balanced between attractors

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

more errors as the number of intervening nouns
of opposite number increases

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

predicts number with 99% accuracy.
...but most examples are very easy

(look at last noun).

when restricted to cases
of at least one intervening noun:

~97% accuracy

(a) (b) (c)

(d) (e) (f)

Figure 2: (a-d) Error rates of the LSTM number prediction model as a function of: (a) distance between
the subject and the verb, in dependencies that have no intervening nouns; (b) presence and number of last
intervening noun; (c) count of attractors in dependencies with homogeneous intervention; (d) presence of
a relative clause with and without an overt relativizer in dependencies with homogeneous intervention and
exactly one attractor. All error bars represent 95% binomial confidence intervals.

(e-f) Additional plots: (e) count of attractors per dependency in the corpus (note that the y-axis is on a log
scale); (f) embeddings of singular and plural nouns, projected onto their first two principal components.

order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

predicts number with 99% accuracy.
...but most examples are very easy

(look at last noun).

when restricted to cases
of at least one intervening noun:

~97% accuracy

(a) (b) (c)

(d) (e) (f)

Figure 2: (a-d) Error rates of the LSTM number prediction model as a function of: (a) distance between
the subject and the verb, in dependencies that have no intervening nouns; (b) presence and number of last
intervening noun; (c) count of attractors in dependencies with homogeneous intervention; (d) presence of
a relative clause with and without an overt relativizer in dependencies with homogeneous intervention and
exactly one attractor. All error bars represent 95% binomial confidence intervals.

(e-f) Additional plots: (e) count of attractors per dependency in the corpus (note that the y-axis is on a log
scale); (f) embeddings of singular and plural nouns, projected onto their first two principal components.

order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.

but < 16% err
for 4 misleading

nouns...

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

in many and diverse cases.

but we did manage to find some common trends.

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

noun compounds can be tricky

reaches 60% (Figure 4e).

Qualitative analysis: We manually examined a
sample of 200 cases in which the majority of the
20 runs of the number prediction network made the
wrong prediction. There were only 8890 such depen-
dencies (about 0.6%). Many of those were straight-
forward agreement attraction errors; others were dif-
ficult to interpret. We mention here three classes of
errors that can motivate future experiments.

The networks often misidentified the heads of
noun-noun compounds. In (17), for example, the
models predict a singular verb even though the num-
ber of the subject conservation refugees should be
determined by its head refugees. This suggests that
the networks didn’t master the structure of English
noun-noun compounds.14

(17) Conservation refugees live in a world col-
ored in shades of gray; limbo.

(18) Information technology (IT) assets com-
monly hold large volumes of confidential
data.

Some verbs that are ambiguous with plural nouns
seem to have been misanalyzed as plural nouns and
consequently act as attractors. The models predicted
a plural verb in the following two sentences even
though neither of them has any plural nouns, possibly
because of the ambiguous verbs drives and lands:

(19) The ship that the player drives has a very
high speed.

(20) It was also to be used to learn if the area

where the lander lands is typical of the sur-
rounding terrain.

Other errors appear to be due to difficulty not in
identifying the subject but in determining whether it
is plural or singular. In Example (22), in particular,
there is very little information in the left context of
the subject 5 paragraphs suggesting that the writer
considers it to be singular:

(21) Rabaul-based Japanese aircraft make three
dive-bombing attacks.

14The dependencies are presented as they appeared in the
corpus; the predicted number was the opposite of the correct one
(e.g., singular in (17), where the original is plural).

(22) The lead is also rather long; 5 paragraphs

is pretty lengthy for a 62 kilobyte article.

The last errors point to a limitation of the number
prediction task, which jointly evaluates the model’s
ability to identify the subject and its ability to assign
the correct number to noun phrases.

8 Related Work

The majority of NLP work on neural networks eval-
uates them on their performance in a task such as
language modeling or machine translation (Sunder-
meyer et al., 2012; Bahdanau et al., 2015). These
evaluation setups average over many different syn-
tactic constructions, making it difficult to isolate the
network’s syntactic capabilities.

Other studies have tested the capabilities of RNNs
to learn simple artificial languages. Gers and Schmid-
huber (2001) showed that LSTMs can learn the
context-free language anbn, generalizing to ns as
high as 1000 even when trained only on n 2
{1, . . . , 10}. Simple recurrent networks struggled
with this language (Rodriguez et al., 1999; Rodriguez,
2001). These results have been recently replicated
and extended by Joulin and Mikolov (2015).

Elman (1991) tested an SRN on a miniature lan-
guage that simulated English relative clauses, and
found that the network was only able to learn the
language under highly specific circumstances (El-
man, 1993), though later work has called some of his
conclusions into question (Rohde and Plaut, 1999;
Cartling, 2008). Frank et al. (2013) studied the ac-
quisition of anaphora coreference by SRNs, again
in a miniature language. Recently, Bowman et al.
(2015) tested the ability of LSTMs to learn an artifi-
cial language based on propositional logic. As in our
study, the performance of the network degraded as
the complexity of the test sentences increased.

Karpathy et al. (2016) present analyses and visual-
ization methods for character-level RNNs. Kádár et
al. (2016) and Li et al. (2016) suggest visualization
techniques for word-level RNNs trained to perform
tasks that aren’t explicitly syntactic (image caption-
ing and sentiment analysis).

Early work that used neural networks to model
grammaticality judgments includes Allen and Sei-
denberg (1999) and Lawrence et al. (1996). More re-
cently, the connection between grammaticality judg-

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

Relative clauses are hard.

Relative clauses: We now look in greater detail
into the network’s performance when the words that
intervened between the subject and verb contained
a relative clause. Relative clauses with attractors
are likely to be fairly challenging, for several rea-
sons. They typically contain a verb that agrees with
the attractor, reinforcing the misleading cue to noun
number. The attractor is often itself a subject of an
irrelevant verb, making a potential “agree with the
most recent subject” strategy unreliable. Finally, the
existence of a relative clause is sometimes not overtly
indicated by a function word (relativizer), as in (11)
(for comparison, see the minimally different (12)):

(11) The landmarks this article lists here are

also run-of-the-mill and not notable.

(12) The landmarks that this article lists here
are also run-of-the-mill and not notable.

For data sparsity reasons we restricted our attention
to dependencies with a single attractor and no other
intervening nouns. As Figure 2d shows, attraction
errors were more frequent in dependencies with an
overt relative clause (9.9% errors) than in dependen-
cies without a relative clause (3.2%), and consider-
ably more frequent when the relative clause was not
introduced by an overt relativizer (25%). As in the
case of multiple attractors, however, while the model
struggled with the more difficult dependencies, its
performance was much better than random guessing,
and slightly better than a majority-class strategy.

Word representations: We explored the 50-
dimensional word representations acquired by the
model by performing a principal component anal-
ysis. We assigned a part-of-speech (POS) to each
word based on the word’s most common POS in the
corpus. We only considered relatively ambiguous
words, in which a single POS accounted for more
than 90% of the word’s occurrences in the corpus.
Figure 2f shows that the first principal component
corresponded almost perfectly to the expected num-
ber of the noun, suggesting that the model learned
the number of specific words very well; recall that
the model did not have access during training to noun
number annotations or to morphological suffixes such
as -s that could be used to identify plurals.

Visualizing the network’s activations: We start
investigating the inner workings of the number pre-
diction network by analyzing its activation in re-
sponse to particular syntactic constructions. To sim-
plify the analysis, we deviate from our practice in the
rest of this paper and use constructed sentences.

We first constructed sets of sentence prefixes based
on the following patterns:

(13) PP: The toy(s) of the boy(s)...

(14) RC: The toy(s) that the boy(s)...

These patterns differ by exactly one function word,
which determines the type of the modifier of the main
clause subject: a prepositional phrase (PP) in the first
sentence and a relative clause (RC) in the second. In
PP sentences the correct number of the upcoming
verb is determined by the main clause subject toy(s);
in RC sentences it is determined by the embedded
subject boy(s).

We generated all four versions of each pattern, and
repeated the process ten times with different lexical
items (the house(s) of/that the girl(s), the computer(s)
of/that the student(s), etc.), for a total of 80 sentences.
The network made correct number predictions for all
40 PP sentences, but made three errors in RC sen-
tences. We averaged the word-by-word activations
across all sets of ten sentences that had the same com-
bination of modifier (PP or RC), first noun number
and second noun number. Plots of the activation of
all 50 units are provided in the Appendix (Figure
5). Figure 3a highlights a unit (Unit 1) that shows
a particularly clear pattern: it tracks the number of
the main clause subject throughout the PP modifier,
resets when it reaches the relativizer that which intro-
duces the RC modifier, and then switches to tracking
the number of the embedded subject.

To explore how the network deals with dependen-
cies spanning a larger number of words, we tracked
its activation during the processing of the following
two sentences:9

(15) The houses of/that the man from the office
across the street...

The network made the correct prediction for the PP
9We simplified this experiment in light of the relative robust-

ness of the first experiment to lexical items and to whether each
of the nouns was singular or plural.

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

Reduced relative clauses are harder.

Relative clauses: We now look in greater detail
into the network’s performance when the words that
intervened between the subject and verb contained
a relative clause. Relative clauses with attractors
are likely to be fairly challenging, for several rea-
sons. They typically contain a verb that agrees with
the attractor, reinforcing the misleading cue to noun
number. The attractor is often itself a subject of an
irrelevant verb, making a potential “agree with the
most recent subject” strategy unreliable. Finally, the
existence of a relative clause is sometimes not overtly
indicated by a function word (relativizer), as in (11)
(for comparison, see the minimally different (12)):

(11) The landmarks this article lists here are

also run-of-the-mill and not notable.

(12) The landmarks that this article lists here
are also run-of-the-mill and not notable.

For data sparsity reasons we restricted our attention
to dependencies with a single attractor and no other
intervening nouns. As Figure 2d shows, attraction
errors were more frequent in dependencies with an
overt relative clause (9.9% errors) than in dependen-
cies without a relative clause (3.2%), and consider-
ably more frequent when the relative clause was not
introduced by an overt relativizer (25%). As in the
case of multiple attractors, however, while the model
struggled with the more difficult dependencies, its
performance was much better than random guessing,
and slightly better than a majority-class strategy.

Word representations: We explored the 50-
dimensional word representations acquired by the
model by performing a principal component anal-
ysis. We assigned a part-of-speech (POS) to each
word based on the word’s most common POS in the
corpus. We only considered relatively ambiguous
words, in which a single POS accounted for more
than 90% of the word’s occurrences in the corpus.
Figure 2f shows that the first principal component
corresponded almost perfectly to the expected num-
ber of the noun, suggesting that the model learned
the number of specific words very well; recall that
the model did not have access during training to noun
number annotations or to morphological suffixes such
as -s that could be used to identify plurals.

Visualizing the network’s activations: We start
investigating the inner workings of the number pre-
diction network by analyzing its activation in re-
sponse to particular syntactic constructions. To sim-
plify the analysis, we deviate from our practice in the
rest of this paper and use constructed sentences.

We first constructed sets of sentence prefixes based
on the following patterns:

(13) PP: The toy(s) of the boy(s)...

(14) RC: The toy(s) that the boy(s)...

These patterns differ by exactly one function word,
which determines the type of the modifier of the main
clause subject: a prepositional phrase (PP) in the first
sentence and a relative clause (RC) in the second. In
PP sentences the correct number of the upcoming
verb is determined by the main clause subject toy(s);
in RC sentences it is determined by the embedded
subject boy(s).

We generated all four versions of each pattern, and
repeated the process ten times with different lexical
items (the house(s) of/that the girl(s), the computer(s)
of/that the student(s), etc.), for a total of 80 sentences.
The network made correct number predictions for all
40 PP sentences, but made three errors in RC sen-
tences. We averaged the word-by-word activations
across all sets of ten sentences that had the same com-
bination of modifier (PP or RC), first noun number
and second noun number. Plots of the activation of
all 50 units are provided in the Appendix (Figure
5). Figure 3a highlights a unit (Unit 1) that shows
a particularly clear pattern: it tracks the number of
the main clause subject throughout the PP modifier,
resets when it reaches the relativizer that which intro-
duces the RC modifier, and then switches to tracking
the number of the embedded subject.

To explore how the network deals with dependen-
cies spanning a larger number of words, we tracked
its activation during the processing of the following
two sentences:9

(15) The houses of/that the man from the office
across the street...

The network made the correct prediction for the PP
9We simplified this experiment in light of the relative robust-

ness of the first experiment to lexical items and to whether each
of the nouns was singular or plural.

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

No relative clause
Overt relative clause
Reduced Relative clause

Error
3.2%
9.9%
25%

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

No relative clause
Overt relative clause
Reduced Relative clause

Error
3.2%
9.9%
25%

humans also fail much more on reduced relatives.

The agreement experiment:
recap

• We wanted to show LSTMs can't learn hierarchy.

• --> We sort-of failed.

• LSTMs learn to cope with natural-language
patterns that exhibit hierarchy, based on
minimal and indirect supervision.

• But some sort of relevant supervision is required.

Can a Transformer
 Learn agreement?

LSTMs can learn agreement very well.

But LSTM-LM does not learn agreem.

Can a Transformer
 Learn agreement?

BERT does extremely well

The agreement experiment:
recap

• I wanted to show Transformers can't learn hierarchy.

• --> Major fail. They are amazing.

• But how do they do it??

we don't know. :-(
yet.

This triggered a lot of very interesting work!

The agreement experiment:
aftermath

This triggered a lot of very interesting work!

The agreement experiment:
aftermath

This triggered a lot of very interesting work!

The agreement experiment:
aftermath

This triggered a lot of very interesting work!

The agreement experiment:
aftermath

This triggered a lot of very interesting work!

many others

The agreement experiment:
aftermath

English is so simple though.
Let's crank up the complexity.

English is so simple though.
Let's crank up the complexity.

◦ Verbs agree with all their arguments (polypersonal agreement)

◦ Explicit case marking on NPs

◦ Relatively flexible word order

◦ Ergative case system

◦Morphologically rich 

Basque is complex

Basque is complex

All scores in Basque were much lower than in English.

Basque is complex

All scores in Basque were much lower than in English.

But why?

Limited data? Poly-personal agreement? Ergativity?  
Word-order? Different domains?

Better variable control
The science way:

Better variable control
The science way:

Better variable control
The science way:

Create synthetic variants of English corpus
imitating the phenomena we care about

English + Polypersonal
Agreement

English ~> Word Orders

English + Case Marking

Conclusions? Check the paper.

Q4: when do models fail? what did they *really* learn?

Q4: when do models fail? what did they *really* learn?

This horse knows how to perform math!!

google
 'clever hans'

Q4: when do models fail? what did they *really* learn?

Methodology:  
create specific examples that 

 make seemingly great models fail.

Q4: when do models fail? what did they *really* learn?

Methodology:  
create specific examples that 

 make seemingly great models fail.

ACL 2018

Q4: when do models fail? what did they *really* learn?

Methodology:  
create specific examples that 

 make seemingly great models fail.

Q4: when do models fail? what did they *really* learn?

Methodology:  
create specific examples that 

 make seemingly great models fail.

ACL 2019

Q4: when do models fail? what did they *really* learn?

Methodology:  
create specific examples that 

 make seemingly great models fail.

Q2: What is encoded/captured in a vector?

Q3: what kinds of linguistic structures  
 can be captured by an RNN?

Q1: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Q4: when do models fail? what did they *really* learn?

Q2: What is encoded/captured in a vector?

Q3: what kinds of linguistic structures  
 can be captured by an RNN?

Q1: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Q4: when do models fail? what did they *really* learn?

Treat the representations / model
as an "organism".

Come up with hypotheses.
Perform experiments.

Q2: What is encoded/captured in a vector?

Q3: what kinds of linguistic structures  
 can be captured by an RNN?

Q1: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Q4: when do models fail? what did they *really* learn?

Treat the representations / model
as an "organism".

Come up with hypotheses.
Perform experiments.

we never learned to do this in CS :(

Q2: What is encoded/captured in a vector?

Q3: what kinds of linguistic structures  
 can be captured by an RNN?

Q1: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Q4: when do models fail? what did they *really* learn?

Q2: What is encoded/captured in a vector?

Q3: what kinds of linguistic structures  
 can be captured by an RNN?

Q1: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Q4: when do models fail? what did they *really* learn?

our latest effort in this space (no slides yet..)

Q5: What is the representation power  
 of different architectures?

Q6: Extracting a discrete representation 
 from a trained model.

Q5: What is the representation power  
 of different architectures?

Q6: Extracting a discrete representation 
 from a trained model.

Back to a "familiar territory".
Computer science. Math.

Agenda

• RNNs

• Formal expressive power of RNNs

• Extracting FSAs from RNNs

Recurrent Neural Networks

• Very strong models of sequential data.

• Trainable function from n vectors to a single vector.

v(what) v(is) v(your) v(name) enc(what is your name)

Recurrent Neural Networks

• There are different variants (implementations).

• Same interface. Same power?

Q5: What is the representation power  
 of different architectures?

Q5: What is the representation power  
 of different architectures?

Q5: What is the representation power  
 of different architectures?

Q5: What is the representation power  
 of different architectures?

are all RNNs equivalent?

RNNs have Turing Power?

RNNs have Turing Power?

YES, THEY DO!

RNNs have Turing Power?

YES, THEY DO!
But this answer is not very useful.

RNNs have Turing Power?

YES, THEY DO!
But this answer is not very useful.

Proof requires infinite precision.
"push 0 into stack": g = g/4 + 1/4

this allows pushing 15 zeros when using 32 bit floating point.

RNNs have Turing Power?

YES, THEY DO!
But this answer is not very useful.

Construction requires complex combination of many
carefully crafted components.

can this really be reached by gradient methods?

RNNs have Turing Power?

YES, THEY DO!
But this answer is not very useful.

Construction requires extra processing time
at the end of the sequence.

we use "real time" RNNs in practice.

RNN Flavors

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

Elman RNN (SRNN)

IRNN

Saturating activation.

ReLU activation.

"Classic" RNNs

RNN Flavors

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

Gated Recurrent Unit

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

LSTM

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

Gated RNNs

RNN Flavors

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

With finite precision, Elman RNNs are Finite State.
We do not know much about other flavors.

Common Wisdom

Gated architectures (GRU, LSTM)
are better than

non-Gated architectures (SRNN, IRNN)

Common Wisdom

Gated architectures (GRU, LSTM)
are better than

non-Gated architectures (SRNN, IRNN)

we show that in terms of expressive power,
there is an aspect in which:

LSTM > GRU
IRNN > SRNN

Power of Counting

(1968)

Power of Counting

(1968)

counter machines are  
Finite State Automata with k counters.

INC, DEC, Compare0

Chomsky Hierarchy

Regular Languages

Chomsky Hierarchy

Regular Languages
Context Free

Chomsky Hierarchy

Regular Languages
Context Free

anbn Palindromes

Chomsky Hierarchy

Regular Languages
Context Free

Context Sensitive

Chomsky Hierarchy

Regular Languages
Context Free

Context Sensitive

anbncn

Power of Counting

Regular Languages
Context Free

Context SensitiveCounter

Power of Counting

Regular Languages
Context Free

Context SensitiveCounter

anbn anbncn Palindromes

Power of Counting

Regular Languages
Context Free

Context SensitiveCounter

anbn anbncn Palindromes

GRU / SRNN

Power of Counting

Regular Languages
Context Free

Context SensitiveCounter

anbn anbncn Palindromes

LSTM / IRNN

GRU / SRNN

IRNN / LSTM can count

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

IRNN / LSTM can count

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

-1 , 1
(via tanh)

1
(via sigmoid)

compare to zero is easy

IRNN / LSTM can count

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

-1 , 1
(via tanh)

1
(via sigmoid)

compare to zero is easy

counting is EASY!
just needs to saturate 3 gates.

IRNN / LSTM can count

+1 in one dim =INC
+1 in other dim =DEC

compare to zero
by subtracting dims

(requires MLP)

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

IRNN

SRNN / GRU cannot count

squashing prevents counting2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

SRNN

SRNN / GRU cannot count

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

gate tie prevents counting -1 , 1
(via tanh)

GRU

SRNN / GRU cannot count

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

gate tie prevents counting -1 , 1
(via tanh)

can do some bounded counting within the -1,1 range.
 hard: requiring precise setting of non-saturated values.

Counting in some other way?

cannot implement a binary-counter (or any k-base counter)
in a single SRNN step.

LSTM vs. GRU

train on anbn up to n=100

LSTM vs. GRU

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

train on anbn up to n=100

LSTM vs. GRU

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

train on anbn up to n=100

GRU starts to fail at n=38

LSTM vs. GRU

train on anbncn up to n=50

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

LSTM vs. GRU

train on anbncn up to n=50

GRU starts to fail at n=8

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

To summarize (this part)

• Escape Turing-completeness by looking into  
finite-precision, real-time RNN

• Real difference in expressive power between
[SRNN, GRU] and [IRNN, LSTM].

• Small architectural choices can matter.

Extracting FSAs from RNNs
what do trained LSTM acceptors encode?

Q6: Extracting a discrete representation 
 from a trained model.

(ICML 2018)

RNN acceptors as
State Machines

RNN acceptors as
State Machines

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

RNN acceptors as
State Machines

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

state

RNN acceptors as
State Machines

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

state input
symbol

RNN acceptors as
State Machines

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

state input
symbol

new
state

RNN acceptors as
State Machines

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

state input
symbol

new
state

accept/reject

RNN acceptors as
State Machines

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

state input
symbol

new
state

accept/reject

very similar to FSA
unfortunately the states are continuous vectors

Learning  
Finite State Automata

• L* algorithm

• FSAs are learnable from "minimally adequate teacher"

• Membership queries  

• Equivalence queries

"does this word belong in the language?"

"does this automaton represent the language?"

Game Plan

• Train an RNN

• Use it as a Teacher in the L* algorithm

• L* learns the FSA represented by the RNN

RNN as  
Minimally Adequate Teacher

Membership Queries

Equivalence Queries

Easy. Just run the word through the RNN.

Hard. Requires some trickery.

Answering  
Equivalence Queries

• Map RNN states to discrete states, forming an FSA
abstraction of the RNN.

• Compare L* Query FSA to RNN-Abstract-FSA.

• Different?

• Maybe state-mapping is wrong. Refine the
mapping.

• Maybe L* FSA is wrong, return a counter example.

Answering  
Equivalence Queries

• Compare L* Query FSA to RNN-Abstract-FSA.

• Different?

• Maybe state-mapping is wrong. Refine the
mapping.

• Maybe L* FSA is wrong, return a counter
example.

=??

Answering  
Equivalence Queries

• Conflict?

• Maybe state-mapping is wrong.  
If so: refine the mapping.

• Maybe L* FSA is wrong.  
If so: return a counter example.

Some Results
• Many random FSAs:

• 5 or 10 states, alphabet sizes of 3 or 5

• LSTM/GRU with 50, 100, 500 dimensions.

• The FSAs were learned well by LSTM / GRU

• And recovered well by L*.

"lists or dicts"

• F

• S

• [F,S,0,F,N,T]

• {S:F,S:F,S:0,S:T,S:S,S:N}

alphabet: F S 0 N T , : { } []

"lists or dicts" perfect!

Balanced Parenthesis

(a((ejka((acs))(asdsa))djljf)kls(fjkljklkids))

alphabet: a-z ()
nesting level up to 8.

Balanced Parenthesis

Balanced Parenthesis

Balanced Parenthesis

Balanced Parenthesis

Balanced Parenthesis

final automaton:

Balanced Parenthesis

final automaton:

Balanced Parenthesis
not quite right

final automaton:

"Emails"
• bla12@abc.com, ahjlkoo@jjjgs.net

[a-z][a-z0-9]*@[a-z0-9]+\.(com|net|co\.[a-z][a-z])

mailto:bla12@abc.com

"Emails"

20,000 positive examples
20,000 negative examples
2,000 examples dev set

• bla12@abc.com, ahjlkoo@jjjgs.net

[a-z][a-z0-9]*@[a-z0-9]+\.(com|net|co\.[a-z][a-z])

mailto:bla12@abc.com

"Emails"

20,000 positive examples
20,000 negative examples
2,000 examples dev set

LSTM has 100% accuracy on both train and dev (and test)

• bla12@abc.com, ahjlkoo@jjjgs.net

[a-z][a-z0-9]*@[a-z0-9]+\.(com|net|co\.[a-z][a-z])

mailto:bla12@abc.com

"Emails"

LSTM has 100% accuracy on both train and dev (and test)

the extraction algorithm did not converge.
we stopped it when it reached over 500 states.

"Emails"

LSTM has 100% accuracy on both train and dev (and test)

the extraction algorithm did not converge.
we stopped it when it reached over 500 states.

some counter-examples it found:

25.net
5x.nem
2hs.net

• We can extract FSAs from RNNs

• ... if the RNN indeed captured a regular structure

• ... and in many cases the representation
captured by the RNN is much more complex
(and wrong!) than the actual concept class.

• Much more to do:

• scale to larger FSAs and alphabets

• scale to non-regular languages

• apply to "real" language data

•

To summarize
• LSTMs (deep nets, Transformers, ...) are very powerful

• We know how to use them.

• We don't know enough about their power and limitations.

• Our intuitions are often wrong.

• We should try to understand them better.

• Using Algorithms, using Math, or using Science.

• Very excited to see the evolving community around these
questions. Join the fun.

To summarize
• LSTMs (deep nets, Transformers, ...) are very powerful

• We know how to use them.

• We don't know enough about their power and limitations.

• Our intuitions are often wrong.

• We should try to understand them better.

• Using Algorithms, using Math, or using Science.

• Very excited to see the evolving community around these
questions. Join the fun.

scratching the black box

To summarize
• LSTMs (deep nets, Transformers, ...) are very powerful

• We know how to use them.

• We don't know enough about their power and limitations.

• Our intuitions are often wrong.

• We should try to understand them better.

• Using Algorithms, using Math, or using Science.

• Very excited to see the evolving community around these
questions. Join the fun.

scratching the black box

To summarize
• LSTMs (deep nets, Transformers, ...) are very powerful

• We know how to use them.

• We don't know enough about their power and limitations.

• Our intuitions are often wrong.

• We should try to understand them better.

• Using Algorithms, using Math, or using Science.

• Very excited to see the evolving community around these
questions. Join the fun.

scratching the black box

To summarize
• LSTMs (deep nets, Transformers, ...) are very powerful

• We know how to use them.

• We don't know enough about their power and limitations.

• Our intuitions are often wrong.

• We should try to understand them better.

• Using Algorithms, using Math, or using Science.

• Very excited to see the evolving community around these
questions. Join the fun.

Thanks.
Questions?

scratching the black box

