0 to ~80 in 90 minutes

a shallow intro to deep networks
 Yoav Goldberg

NLPL Winter School 2020
"I do think that most participants will know the basics about embeddings, neural networks and loss functions (although the depth of their knowledge will vary, of course)."
"I do think that most participants will know the basics about embeddings, neural networks and loss functions (although the depth of their knowledge will vary, of course)."

Neural Networks

$$
f(0000)=000
$$

functions from vectors
to vectors

Neural Networks

functions from vectors to probabilities
(these are still functions from vectors to vectors)

Predicting from a vector

Predict from a vector (Linear Layer)

Predict from a vector (Linear Layer)

$\mathbf{W} \mathbf{x}+\mathbf{b}$

Predict from a vector

 (Linear Layer + softmax)$$
p(y=? \mid \mathbf{x})
$$

$$
\operatorname{predict}(\mathbf{x})=\operatorname{softmax}(\mathbf{W} \mathbf{x}+\mathbf{b})
$$

$\mathbf{W} \mathbf{x}+\mathbf{b}$

$$
\operatorname{softmax}(\mathbf{x})_{[i]}=\frac{e^{\mathbf{x}_{[i]}}}{\sum_{j} e^{\mathbf{x}_{[j]}}}
$$

Predict from a vector

 (Linear Layer + softmax)$$
p(y=? \mid \mathbf{x})
$$

$$
\operatorname{predict}(\mathbf{x})=\operatorname{softmax}(\mathbf{W} \mathbf{x}+\mathbf{b})
$$

$$
\operatorname{softmax}(\mathbf{x})_{[i]}=\frac{e^{\mathbf{x}_{[i]}}}{\sum_{j} e^{\mathbf{x}_{[j]}}}
$$

(can still take the argmax, will yield same result)

Predict from a vector (Linear Layer + softmax)

$$
p(y=? \mid \mathbf{x})
$$

Training:
 Learning as optimization

Data:

$$
\begin{aligned}
& \mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}} \\
& \mathbf{y}_{1}, \ldots, \mathbf{y}_{\mathbf{n}}
\end{aligned}
$$

(y_{i} are vectors, why?)

1 softmax $\mathbf{W} \mathbf{x}+\mathbf{b}$

Desired:

Training:

Learning as optimization

$$
\begin{aligned}
& \mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}} \\
& \mathbf{y}_{1}, \ldots, \mathbf{y}_{\mathbf{n}}
\end{aligned}
$$

Desired:
$f_{\theta}(\mathbf{x}) \quad$ "that works well"

$$
\begin{aligned}
\mathbf{Y} & =\mathbf{y}_{\mathbf{1}}, \ldots, \mathbf{y}_{\mathbf{n}} \\
\hat{\mathbf{Y}}_{\theta} & =f_{\theta}\left(\mathbf{x}_{\mathbf{1}}\right), \ldots, f_{\theta}\left(\mathbf{x}_{\mathbf{n}}\right)
\end{aligned}
$$

$$
\mathcal{L}\left(\mathbf{Y}, \hat{\mathbf{Y}}_{\theta}\right)
$$

loss function

Training:

Learning as optimization

$$
\begin{aligned}
& \mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}} \\
& \mathbf{y}_{1}, \ldots, \mathrm{y}_{\mathbf{n}}
\end{aligned}
$$

Desired:

$$
f_{\theta}(\mathbf{x}) \quad \text { "that works well" }
$$

$$
\begin{aligned}
\mathbf{Y} & =\mathbf{y}_{\mathbf{1}}, \ldots, \mathbf{y}_{\mathbf{n}} \\
\hat{\mathbf{Y}}_{\theta} & =f_{\theta}\left(\mathbf{x}_{\mathbf{1}}\right), \ldots, f_{\theta}\left(\mathbf{x}_{\mathbf{n}}\right)
\end{aligned}
$$

$$
\underset{\text { loss function }}{\mathcal{L}\left(\mathbf{Y}, \hat{\mathbf{Y}}_{\theta}\right) \propto \sum_{i=1}^{n} \ell\left(\mathbf{y}_{\mathbf{i}}, f_{\theta}\left(\mathbf{x}_{\mathbf{i}}\right)\right)} \begin{gathered}
\text { decomposed } \\
\text { over items }
\end{gathered}
$$

Training:

Learning as optimization

$$
\arg \min _{\theta} \mathcal{L}\left(\mathbf{Y}, \hat{\mathbf{Y}}_{\theta}\right)
$$

solved with gradient based methods

Desired:

$$
f_{\theta}(\mathbf{x}) \quad \text { "that works well" }
$$

$$
\begin{aligned}
\mathbf{Y} & =\mathbf{y}_{\mathbf{1}}, \ldots, \mathbf{y}_{\mathbf{n}} \\
\hat{\mathbf{Y}}_{\theta} & =f_{\theta}\left(\mathbf{x}_{\mathbf{1}}\right), \ldots, f_{\theta}\left(\mathbf{x}_{\mathbf{n}}\right)
\end{aligned}
$$

$$
\underset{\text { loss function }}{\mathcal{L}\left(\mathbf{Y}, \hat{\mathbf{Y}}_{\theta}\right) \propto \sum_{i=1}^{n} \ell\left(\mathbf{y}_{\mathbf{i}}, f_{\theta}\left(\mathbf{x}_{\mathbf{i}}\right)\right)} \text { decomposed} \text { over items }
$$

Training:

cross-entropy loss

$$
\arg \min _{\theta} \mathcal{L}\left(\mathbf{Y}, \hat{\mathbf{Y}}_{\theta}\right) \propto \sum_{i=1}^{n} \ell\left(\mathbf{y}_{\mathbf{i}}, f_{\theta}\left(\mathbf{x}_{\mathbf{i}}\right)\right)
$$

When prediction are "probabilities"

$$
\hat{\mathbf{y}}_{[k]}=P(y=k \mid \mathbf{x})
$$

$$
\ell_{\text {cross-ent }}=-\sum_{k} \mathbf{y}_{[k]} \log \hat{\mathbf{y}}_{[k]}
$$

for "hard" (0 or 1) labels:

$$
\ell_{\text {cross-ent }}=-\log \hat{\mathbf{y}}_{[t]}
$$

Training:

cross-entropy loss

other loss functions are available. but not today.

$$
\arg \min _{\theta} \mathcal{L}\left(\mathbf{Y}, \hat{\mathbf{Y}}_{\theta}\right) \propto \sum_{i=1}^{n} \ell\left(\mathbf{y}_{\mathbf{i}}, f_{\theta}\left(\mathbf{x}_{\mathbf{i}}\right)\right)
$$

When prediction are "probabilities"

$$
\hat{\mathbf{y}}_{[k]}=P(y=k \mid \mathbf{x})
$$

$$
\ell_{\text {cross-ent }}=-\sum_{k} \mathbf{y}_{[k]} \log \hat{\mathbf{y}}_{[k]}
$$

for "hard" (0 or 1) labels:

$$
\ell_{\text {cross-ent }}=-\log \hat{\mathbf{y}}_{[t]}
$$

from (log) linear to MLP

Hypothesis classes: from (log) linear to MLP y softmax

	\uparrow
$\mathbf{W} \mathbf{x}+\mathbf{b}$	Linear
	\uparrow
\mathbf{x}	\uparrow

Hypothesis classes:

 from (log) linear to MLP

MLP (multi-layer perceptron)
is strictly more powerful than linear.
Can learn any borelmeasurable function (if large enough)

$$
\mathbf{W}^{1} \mathbf{x}+\mathbf{b}^{1}
$$

the common ones

Neural Network

Predicting from words

Neural NLP Building Blocks

- Word Embeddings: translate a word to a vector.
- Ways of combining vectors.

Word Embéddings

10

5

diaes

Word Embeddings

- Translate each word in the (fixed) vocabulary to a vector.
- Typical dimensions: 100-300
- Translation is done using a lookup table.
- Can be "pre-trained" (word2vec, glove)
- Dealing with "infinite" vocabularies:
- \{characters\}, \{word pieces, bpe\}, \{fastText\}

Word Embeddings

- \{characters\}, \{word pieces, bpe\}, \{fastText\}

Word Embeddings

$\mathbf{v}_{b o o k}=\mathbf{E}[b o o k]$

Combining Vectors

Combining Vectors

Combining Vectors

I read a book about

Combining Vectors

I read a book about

Combining Vectors

book a about read I

Combining Vectors

Concatenate

I read
000000000
I read a

```
000000000000000
```

I read a book
\square
I read a book about

Sum (or average)
"cbow"
I read
00000
I read a
\square
I read a book
00000
I read a book about
0000
I book a read about book about read I a I a about book read a read about book I
order invariant

$\mathrm{W}^{2} \mathrm{x}+\mathrm{b}^{\mathbf{2}}$
$g(\mathbf{h})$
h
$\mathbf{W}^{\mathbf{1}} \mathbf{x}+\mathbf{b}^{\mathbf{1}}$

Linear

\uparrow

 \uparrow

The Computation Graph

Gradient-based training

- Computing the gradients:
- The network (and loss calculation) is a mathematical function.
$\ell(x, k)=-\log \left(\operatorname{softmax}\left(\mathbf{W}^{3} g^{2}\left(\mathbf{W}^{2} g^{1}\left(\mathbf{W}^{1} x+\mathbf{b}^{1}\right)+\mathbf{b}^{2}\right)+\mathbf{b}^{3}\right)[k]\right)$
- Calculus rules apply.
- (a bit hairy, but carefully follow the chain rule and you'll get there)

The Computation Graph

- a DAG.
- Leafs are inputs (or parameters).
- Nodes are operators (functions).
- Edges are results (values).
- Can be built for any function.

$$
(a * b+1) *(a * b+2)
$$

$M L P_{1}$

$M L P_{1}$ with concrete input

- Create a graph for each training example.
- Once graph is built, we have two essential algorithms:
- Forward: compute all values.
- Backward (backprop): compute all gradients.

Computing the Gradients (backprop)

- Consider the chain-rule (example on blackboard)
- Each node needs to know how to:
- Compute forward.
- Compute its local gradient. Landscape (partial)

theano

TensorFlow

K

Chainer

ay/net
PYTÖRCH

TensorFlow

static graphs
dynamic graphs
Chainer
$\partial y / n e t$
PYTÖRCH

TensorFlow

static graphs
dynamic graphs
Chainer
$\partial y /$ net pytorch

- automatic batching

Network Training algorithm:

- For each training example (or mini-batch):
- Create graph for computing loss.
- Compute loss (forward).
- Compute gradients (backwards).
- Update model parameters.

DyNet Example

\# model initialization.
model = Model()
mW1 = model.add_parameters($(20,150)$)
mb1 = model.add_parameters(20)
mW2 = model.add_parameters($(17,20))$
mb2 = model.add_parameters(17)
lookup $=$ model.add_lookup_parameters (100,50)
\# Building the computation graph:
renew_cg() \# create a new graph.
\# Wrap the model parameters as graph-nodes.
W1 = parameter (mW1)
b1 = parameter (mb1)
W2 = parameter (mW2)
b2 = parameter (mb2)
def get_index(x): return 1
\# Generate the embeddings layer.
vthe $=$ lookup[get_index("the")]
vblack = lookup[get_index("black")]
vdog = lookup[get_index("dog")]
\# Connect the leaf nodes into a complete graph.
$\mathrm{x}=$ concatenate([vthe, vblack, vdog])
output $=\operatorname{softmax}(W 2 *(\tanh (W 1 * x)+b 1)+b 2)$
loss $=-\log ($ pick(output, 5))
loss_value = loss.forward()

loss.backward() \# the gradient is computed
\# and stored in the corresponding
\# parameters.

DyNet Example

\# model initialization.
model = Model ()
mW1 = model.add_parameters $(20,150))$
mb1 = model.add_parameters (20)
mW2 $=$ model.add_parameters $((17,20))$
mb2 = model.add_parameters(17)
lookup $=$ model.add_lookup_parameters $(100,50))$

```
# Building the computation graph:
renew_cg() # create a new graph.
# Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)
b1 = parameter(mb1)
W2 = parameter (mW2)
b2 = parameter(mb2)
def get_index(x): return 1
# Generate the embeddings layer.
vthe = lookup[get_index("the")]
vblack = lookup[get_index("black")]
vdog = lookup[get_index("dog")]
# Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])
output = softmax(W2*(tanh (W1*x) +b1) +b2)
loss = -log(pick(output, 5))
```

loss_value $=$ loss.forward()
loss.backward() \# the gradient is computed
\# and stored in the corresponding
\# parameters.

DyNet Example

\# model initialization.
model = Model()
mW1 = model.add_parameters(20,150$)$)
mb1 = model.add_parameters(20)
mW2 = model.add_parameters ($(17,20)$)
mb2 = model.add_parameters(17)
lookup $=$ model.add_lookup_parameters((100, 50))
\# Building the computation graph:
renew_cg() \# create a new graph.
\# Wrap the model parameters as graph-nodes.
W1 = parameter (mW1)
b1 = parameter (mb1)
W2 = parameter (mW2)
b2 = parameter (mb2)
def get_index(x): return 1
\# Generate the embeddings layer.
vthe $=$ lookup[get_index("the")]
vblack = lookup[get_index("black")]
vdog = lookup[get_index("dog")]
\# Connect the leaf nodes into a complete graph.
$\mathrm{x}=$ concatenate([vthe, vblack, vdog])
output $=\operatorname{softmax}(W 2 *(\tanh (W 1 * x)+b 1)+b 2)$
loss $=-\log ($ pick (output, 5))
loss_value = loss.forward()

loss.backward() \# the gradient is computed
\# and stored in the corresponding
\# parameters.

DyNet Example

\# model initialization.
model = Model()
mW1 = model.add_parameters(20,150$)$)
mb1 = model.add_parameters(20)
mW2 = model.add_parameters ($(17,20)$)
mb2 = model.add_parameters(17)
lookup $=$ model.add_lookup_parameters((100, 50))
\# Building the computation graph:
renew_cg() \# create a new graph.
\# Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)
b1 = parameter (mb1)
W2 = parameter (mW2)
b2 = parameter (mb2)
def get_index(x): return 1
\# Generate the embeddings layer.

```
vthe = lookup[get_index("the")]
vblack = lookup[get_index("black")]
vdog = lookup[get_index("dog")]
# Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])
output = softmax(W2*(tanh (W1*x) +b1) +b2)
loss = -log(pick(output, 5))
```

loss_value = loss.forward()
loss.backward() \# the gradient is computed
\# and stored in the corresponding
\# parameters.

DyNet Example

\# model initialization.
model = Model()
mW1 = model.add_parameters(20,150$)$)
mb1 = model.add_parameters(20)
mW2 = model.add_parameters ($(17,20)$)
mb2 = model.add_parameters(17)
lookup $=$ model.add_lookup_parameters (100,50)
\# Building the computation graph:
renew_cg() \# create a new graph.
\# Wrap the model parameters as graph-nodes.
W1 = parameter (mW1)
b1 = parameter (mb1)
W2 = parameter (mW2)
b2 = parameter (mb2)
def get_index(x): return 1
\# Generate the embeddings layer.
vthe $=$ lookup [get_index("the")]
vblack = lookup[get_index("black")]
vdog = lookup[get_index("dog")]
\# Connect the leaf nodes into a complete graph.
$\mathrm{x}=$ concatenate([vthe, vblack, vdog])
output $=\operatorname{softmax}(W 2 *(\tanh (W 1 * x)+b 1)+b 2)$
loss $=-\log ($ pick(output, 5))

```
```

loss_value = loss.forward()

```
```

loss_value = loss.forward()
loss.backward() \# the gradient is computed
loss.backward() \# the gradient is computed
\# and stored in the corresponding
\# and stored in the corresponding
\# parameters.

```
```

 # parameters.
    ```
```

$A 12$

Back to Combining Vectors

ConvNets

- "bags of ngrams".
- Useful!
(we'll probably skip them today)
$A R$

0000000000000000000000000 the actual service was not very good
$A R$

0000000
dot
00000000000000000000000000
the actual service was not very good
$A R$

II

0000000
dot

the actual service was not very good

0000000
dot

the actual service was not very good

II
\square
0000000
dot

the actual service was not very good

II

0000000
dot

the actual service was not very good

II
\square
dot
 the actual service was not very good

II
00000000
dot
 the actual service was not very good

II

0000000

dot
 the actual service was not very good

0000000
dot

the actual service was not very good
II

dot
0000000000000000000000000
the actual service was not very good

dot

the actual service was not very good

II

dot
\square the actual service was not very good

(another way to represent text convolutions)

(another way to represent text convolutions)

(another way to represent text convolutions)

the actual service was not very good
(we'll focus on the 1-d view here, but remember they are equivalent)

II
00000000
dot

the actual service was not very good
(usually also add non linearity)

II

dot
000000000000000000000000
the actual service was not very good
(can have larger filters)

$\frac{1}{c}$ II
dot
0000000000000000000000000
the actual service was not very good
(can have larger filters)

00000000000000000000000000 the actual service was not very good

 we have the ngram vectors. now what?

 the actual service was not very good

can do "pooling"
"Pooling"

Combine K vectors into a single vector

"Pooling"

Combine K vectors into a single vector
This vector is a summary of the K vectors, and can be used for prediction.

average pooling

0000000000000000000000000 the actual service was not very good
max pooling

0000000000000000000000000 the actual service was not very good
max pooling
average vevェ・

the actual service was not very good
max over each dimension

00000000000000000000000000
the actual service was not very good

train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)

ALLEN INSTITUTE

RNNs

Combining Vectors

Recurrent Neural Network: RNN

Combining Vectors

Recurrent Neural Network: RNN

I read a book about

Combining Vectors

I read a book about

Combining Vectors

$$
\mathbf{s}_{\mathbf{i}}=R N N\left(\mathbf{s}_{\mathbf{i}-\mathbf{1}}, \mathbf{x}_{\mathbf{i}}\right)
$$

Combining Vectors

Combining Vectors

Combining Vectors

1

read

4
a

I read a I read a book I read a book about

about

Combining Vectors

Recurrent Neural Network: RNN

$$
\mathbf{s}_{\mathbf{i}}=R N N\left(\mathbf{s}_{\mathbf{i}-\mathbf{1}}, \mathbf{x}_{\mathbf{i}}\right)
$$

Combining Vectors

Recurrent Neural Network: RNN

$$
R_{S R N N}\left(\mathbf{s}_{\mathbf{i}-\mathbf{1}}, \mathbf{x}_{\mathbf{i}}\right)=\tanh \left(\mathbf{W}^{\mathbf{s}} \cdot \mathbf{s}_{\mathbf{i}-\mathbf{1}}+\mathbf{W}^{\mathbf{x}} \cdot \mathbf{x}_{\mathbf{i}}\right)
$$

Combining Vectors

Recurrent Neural Network: RNN

$$
\begin{aligned}
R_{L S T M}\left(\mathbf{s}_{\mathbf{j}-\mathbf{1}}, \mathbf{x}_{\mathbf{j}}\right) & =\left[\mathbf{c}_{\mathbf{j}} ; \mathbf{h}_{\mathbf{j}}\right] \\
\mathbf{c}_{\mathbf{j}} & =\mathbf{c}_{\mathbf{j}-\mathbf{1}} \odot \mathbf{f}+\mathbf{g} \odot \mathbf{i} \\
\mathbf{h}_{\mathbf{j}} & =\tanh \left(\mathbf{c}_{\mathbf{j}}\right) \odot \mathbf{o} \\
\mathbf{i} & =\sigma\left(\mathbf{W}^{\mathrm{xi}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h i}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right) \\
\mathbf{f} & =\sigma\left(\mathbf{W}^{\mathbf{x f}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h f}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right) \\
\mathbf{o} & =\sigma\left(\mathbf{W}^{\mathbf{x o}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h o}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right) \\
\mathbf{g} & =\tanh \left(\mathbf{W}^{\mathbf{x g}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h g}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
R_{L S T M}\left(\mathbf{s}_{\mathbf{j}-\mathbf{1}}, \mathbf{x}_{\mathbf{j}}\right) & =\left[\mathbf{c}_{\mathbf{j}} ; \mathbf{h}_{\mathbf{j}}\right] \\
\mathbf{c}_{\mathbf{j}} & =\mathbf{c}_{\mathbf{j}-\mathbf{1}} \odot \mathbf{f}+\mathbf{g} \odot \mathbf{i} \\
\mathbf{h}_{\mathbf{j}} & =\tanh \left(\mathbf{c}_{\mathbf{j}}\right) \odot \mathbf{o} \\
\mathbf{i} & =\sigma\left(\mathbf{W}^{\mathrm{xi}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h i}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right) \\
\mathbf{f} & =\sigma\left(\mathbf{W}^{\mathbf{x f}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h f}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right) \\
\mathbf{o} & =\sigma\left(\mathbf{W}^{\mathbf{x o}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h o}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right) \\
\mathbf{g} & =\tanh \left(\mathbf{W}^{\mathbf{x g}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h g}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right)
\end{aligned}
$$

better controlled memory access

- The main idea behind the LSTM is that you want to somehow control the "memory access".
- In a SimpleRNN:

$$
R_{S R N N}\left(\mathbf{s}_{\mathbf{i}-\mathbf{1}}, \mathbf{x}_{\mathbf{i}}\right)=\tanh \left(\mathbf{W}^{\mathbf{s}} \cdot \mathbf{s}_{\mathbf{i}-\mathbf{1}}+\mathbf{W}^{\mathbf{x}} \cdot \mathbf{x}_{\mathbf{i}}\right)
$$

read previous state memory
write new input

- All the memory gets overwritten

Vector Gates

- We'd like to:
* Selectively read from some memory "cells".
* Selectively write to some memory "cells".

Vector "Gates"

- We'd like to:
* Selectively read from some memory "cells".
* Selectively write to some memory "cells".
- A gate function:

gate controls access

Vector "Gates"

- We'd like to:
* Selectively read from some memory "cells".
* Selectively write to some memory "cells".
- A gate function:

$$
\mathbf{s}_{\mathbf{i}-\mathbf{1}} \odot \mathbf{g} \quad \mathbf{g} \in\{0,1\}^{d}
$$

vector of values
gate controls access

Vector "Gates"

- Using the gate function to control access:

$$
\mathbf{s}_{\mathbf{i}} \leftarrow \mathbf{s}_{\mathbf{i}-\mathbf{1}} \odot \mathbf{g}^{\mathbf{r}}+\mathbf{x}_{\mathbf{i}} \odot \mathbf{g}_{\text {which cells to write }}^{\mathbf{w}} \quad \mathbf{g} \in\{0,1\}^{d}
$$

which cells to read

Vector "Gates"

- Using the gate function to control access:
which cells to read

$$
\mathbf{s}_{\mathbf{i}} \leftarrow \mathbf{s}_{\mathbf{i}-\mathbf{1}} \odot \mathbf{g}^{\mathbf{r}}+\mathbf{x}_{\mathbf{i}} \odot \mathbf{g}_{\text {which cells to write }}^{\mathbf{w}} \quad \mathbf{g} \in\{0,1\}^{d}
$$

- (can also tie them: $\mathbf{g}^{\mathbf{r}}=1-\mathbf{g}^{\mathbf{w}}$)

Vector "Gates"

$\left.\begin{array}{cc}{\left[\begin{array}{c}8 \\ 11 \\ 3 \\ 7 \\ 5 \\ 15\end{array}\right]} & \leftarrow \\ \mathbf{s}^{\prime} & {\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right] \odot\left[\begin{array}{l}10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15\end{array}\right]}\end{array}+\begin{array}{l}1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0\end{array}\right] \odot\left[\begin{array}{l}8 \\ 9 \\ 3 \\ 7 \\ 5 \\ 8\end{array}\right]$

Differentiable "Gates"

- Problem with the gates:
* they are fixed.
* they don't depend on the input or the output.

Differentiable "Gates"

- Problem with the gates: * they are fixed. * they don't depend on the input or the output.
- Solution: make them smooth, input dependent, and trainable.

"almost 1"
- The LSTM is a specific combination of gates.

$$
\begin{aligned}
& R_{L S T M}\left(\mathbf{s}_{\mathbf{j}-\mathbf{1}}, \mathbf{x}_{\mathbf{j}}\right)=\left[\mathbf{c}_{\mathbf{j}} ; \mathbf{h}_{\mathbf{j}}\right] \\
& \mathbf{c}_{\mathbf{j}}=\mathbf{c}_{\mathbf{j}-\mathbf{1}} \odot \mathbf{f}+\mathbf{g} \odot \mathbf{i} \\
& \mathbf{h}_{\mathbf{j}}=\tanh \left(\mathbf{c}_{\mathbf{j}}\right) \odot \mathbf{o} \\
& \mathbf{i}=\sigma\left(\mathbf{W}^{\mathbf{x i}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h i}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right) \\
& \mathbf{f}=\sigma\left(\mathbf{W}^{\mathbf{x f}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h f}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right) \\
& \mathbf{o}=\sigma\left(\mathbf{W}^{\mathbf{x o}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h o}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right) \\
& \mathbf{g}=\tanh \left(\mathbf{W}^{\mathbf{x g}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h g}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right) \\
& O_{L S T M}\left(\mathbf{s}_{\mathbf{j}}\right)=O_{L S T M}\left(\left[\mathbf{c}_{\mathbf{j}} ; \mathbf{h}_{\mathbf{j}}\right]\right)=\mathbf{h}_{\mathbf{j}}
\end{aligned}
$$

Combining Vectors

Recurrent Neural Network: RNN

$$
\begin{aligned}
R_{L S T M}\left(\mathbf{s}_{\mathbf{j}-\mathbf{1}}, \mathbf{x}_{\mathbf{j}}\right) & =\left[\mathbf{c}_{\mathbf{j}} ; \mathbf{h}_{\mathbf{j}}\right] \\
\mathbf{c}_{\mathbf{j}} & =\mathbf{c}_{\mathbf{j}-\mathbf{1}} \odot \mathbf{f}+\mathbf{g} \odot \mathbf{i} \\
\mathbf{h}_{\mathbf{j}} & =\tanh \left(\mathbf{c}_{\mathbf{j}}\right) \odot \mathbf{o} \\
\mathbf{i} & =\sigma\left(\mathbf{W}^{\mathrm{xi}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h i}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right) \\
\mathbf{f} & =\sigma\left(\mathbf{W}^{\mathbf{x f}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h f}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right) \\
\mathbf{o} & =\sigma\left(\mathbf{W}^{\mathbf{x o}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h o}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right) \\
\mathbf{g} & =\tanh \left(\mathbf{W}^{\mathbf{x g}} \cdot \mathbf{x}_{\mathbf{j}}+\mathbf{W}^{\mathbf{h g}} \cdot \mathbf{h}_{\mathbf{j}-\mathbf{1}}\right)
\end{aligned}
$$

Combining Vectors

Recurrent Neural Network: RNN

Combining Vectors
 multi-layer RNN

Bi-RNN

keep intermediate vectors

add right-to-left RNN
 (bi-RNN)

add right-to-left RNN
 (bi-RNN)

add right-to-left RNN
 (bi-RNN)

Leyó el libro en cama

Bi-RNN

a representation of a word in context.

add right-to-left RNN (bi-RNN)

Leyó el libro en cama
$\square 0$

Leyó el libro en cama
000

Leyó el libro en ca@̂a Leyó el libro en cama \uparrow

Leyó el libro en cama
000

cama

Training
RNN

Training

bi-RNN

| solution 1: |
| :---: |
| don't predict words. |
| predict tags. use as part fo larger network. |

bi-RNN

| solution 2: |
| :---: |
| single layer. skip word |

bi-RNN

| solution 2: |
| :---: |
| single layer. skip word |

Training

bi-RNN

solution 3: masking.

Predict

Training

bi-RNN

| solution 3: |
| :---: |
| masking. |

book

Predict

Training

bi-RNN

| solution 3: |
| :---: |
| masking. |

read

Predict

Generation

from RNN
He

Generation

from RNN

Generation

from RNN

Generation

from RNN

Generation

from RNN

Conditioned Generation

from RNN

Conditioned Generation

Conditioned Generation

condition
vector

| 000 | 000 | 000 | 000 |
| :--- | :--- | :--- | :--- | :--- |

Conditioned Generation

Table

| Name | Triton 52 |
| :---: | :---: |
| EcoRating | A+ |
| Family | L7 |

Encode
condition
vector

Conditioned Generation

Text

Leyó el libro en cama

Encode
condition
vector

ALLEN INSTITUTE
(or ARTFICIIAL INTELLIGENCE

00 Leyó el libro en cama

| RNN cell |
| :---: | :---: | :---: | :---: | :---: |
| \uparrow | \uparrow | \uparrow | \uparrow | \uparrow |
| 00000 | 00000 | 00000 | 00000 | 0000 |
| Leyó | el | libro | en | cama |

㟧Seq2Seq + Attention

keep intermediate vectors

簘Seq2Seq + Attention

as Bi-RNN

$A 12$
ALLEN INSTITUTE
for ARTIFICIAL INTELIGENCE
$A 12$
ALLEN INSTITUTE
Cor ARTFICIIALINTELIGENCE

He
\uparrow
Predict

weighted sum

Transformer

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com
Noam Shazeer*
Google Brain
noam@google.com
Niki Parmar*
Google Research
nikip@google.com
Jakob Uszkoreit*
Google Research
usz@google.com

Llion Jones*
Google Research
llion@google.com

Lukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* \ddagger
illia.polosukhin@gmail.com

Transformer

replace RNN with attention-based mechanism

- Main concepts to know:
- Self-attention
- Multi-head attention
- Also think about: why do this? what is the motivation?

Transformer

Self attention

each token attends to all tokens in previous layer

Transformer

Self attention

Transformer

Self attention

Transformer

multi-head attention

one attention pattern

Transformer

multi-head attention

another attention pattern

Transformer

multi-head attention

why chose if we can just have several?

Transformer

Skip connections

Cost vs Opportunity

- Consider a standard d layer RNN from Lecture 13 with k hidden units, training on a sequence of length t.

- There are k^{2} connections for each hidden-to-hidden connection. A total of $t \times k^{2} \times d$ connections.
- We need to store all $t \times k \times d$ hidden units during training.
- Only $k \times d$ hidden units need to be stored at test time.

Cost vs Obportunitv

- Consider a standard d layer RNN from Lecture 13 with k hidden units, training on a sequence of length t.

- Which hidden layers can be computed in parallel in this RNN?

Cost vs Obportunitv

- Consider a standard d layer RNN from Lecture 13 with k hidden units, training on a sequence of length t.

- Which hidden layers can be computed in parallel in this RNN?

Cost vs Opportunity

- Consider a standard d layer RNN from Lecture 13 with k hidden units, training on a sequence of length t.

- Both the input embeddings and the outputs of an RNN can be computed in parallel.
- The blue hidden units are independent given the red.
- The numer of sequential operation is still propotional to t.

Cost vs Opportunity

RNN to Self-attention

Cost vs Opportunity

 RNN to Self-attention

Cost vs Opportunity
 RNN to Self-attention

Cost vs Opportunity

RNN to Self-attention

Cost vs Opportunity
 RNN to Self-attention

Transformer

Information flow

how do we pass information between the blue arrows?

 \section*{\title{
Transformer
}}
 \section*{\title{
Transformer
}}

VS
RNN case

Information flow

how do we pass information between the blue arrows?

Transformer

Positional information

Transformer

Positional information

Encoder abstarctions

Decoders

| Linear, MLP (predict) at single vector | one prediction |
| :--- | :--- |
| | at each position |
| input length | |

$A 12$

