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"I do think that most participants will know the basics 
about embeddings, neural networks and loss functions 
(although the depth of their knowledge will vary, of 
course)."
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Neural Networks

f(                 ) =

functions from vectors 
to vectors



Neural Networks

p(                 ) =

functions from vectors 
to probabilities

(these are still functions from vectors to vectors)



Predicting from a vector



Predict from a vector 
(Linear Layer)

predict(x) = Wx+ b

Linear
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predict(x) = argmax
i

(Wx+ b)[i]
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predict(x) = softmax(Wx+ b)

Predict from a vector 
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Predict from a vector 
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(can still take the argmax, will yield same result)



predict(x) = softmax(Wx+ b)

softmax(x)[i] =
ex[i]

P
j e

x[j]

p(y =?|x)

Predict

x

Wx+ b
softmax

y

Predict from a vector 
(Linear Layer + softmax)



Training:  
Learning as optimization

x1, ...,xn

y1, ...,yn

Data:

Desired:

PredictWx+ b
softmax

(yi are vectors, why?)

f✓(x)

✓ = W,b
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"that works well"

- hypothesis class 
- parameters 
- a search problem



Training:  
Learning as optimization

x1, ...,xn

y1, ...,yn

f✓(x) "that works well"

Y = y1, ...,yn

Ŷ✓ = f✓(x1), ..., f✓(xn)
L(Y, Ŷ✓)

Desired:

loss function



Training:  
Learning as optimization

x1, ...,xn

y1, ...,yn

examples / instances / items
labels

f✓(x) "that works well"

Y = y1, ...,yn

Ŷ✓ = f✓(x1), ..., f✓(xn)
L(Y, Ŷ✓)

Desired:

loss function

/
nX

i=1

`(yi, f✓(xi))

decomposed 
over items



Training:  
Learning as optimization

f✓(x) "that works well"

Y = y1, ...,yn

Ŷ✓ = f✓(x1), ..., f✓(xn)
L(Y, Ŷ✓) /

nX

i=1

`(yi, f✓(xi))

Desired:

loss function decomposed 
over items

argmin
✓

L(Y, Ŷ✓) solved with  
gradient based methods



Training:  
cross-entropy loss

argmin
✓

L(Y, Ŷ✓)

`cross-ent = �
X

k

y[k] log ŷ[k]

/
nX

i=1

`(yi, f✓(xi))

When prediction are "probabilities" ŷ[k] = P (y = k|x)

`cross-ent = � log ŷ[t]for "hard" (0 or 1) labels:



Training:  
cross-entropy loss

argmin
✓

L(Y, Ŷ✓)

`cross-ent = �
X

k

y[k] log ŷ[k]

/
nX

i=1

`(yi, f✓(xi))

When prediction are "probabilities" ŷ[k] = P (y = k|x)

`cross-ent = � log ŷ[t]for "hard" (0 or 1) labels:

other loss functions are available. but not today.



Hypothesis classes:  
from (log) linear to MLP

Linear

x

Wx+ b

softmax

y

y0

Linear

x

softmax

y

y0

h
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<latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit>



Hypothesis classes:  
from (log) linear to MLP
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y
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y
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h
<latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit>

W1x+ b1
<latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit>

Linear

g(h)
<latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit><latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit><latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit><latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit>

non-linearity
(ReLU)

W2h+ b2
<latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit>
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x
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h
<latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit>
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non-linearity
(ReLU)

MLP (multi-layer 
perceptron) 
is strictly more 
powerful than  
linear. 
Can learn any borel-
measurable function 
(if large enough)

W2h+ b2
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Figure 4.3: Activation functions (top) and their derivatives (bottom).

the network’s output ŷ given the true expected output y. The loss functions discussed for
linear models in 2.7.1 are relevant and widely used also for neural networks. For further
discussion on loss functions in the context of neural networks see [Bengio et al., 2016, LeCun
and Huang, 2005, LeCun et al., 2006].

4.6 REGULARIZATION AND DROPOUT

Multi-layer networks can be large and have many parameters, making them especially prone
to overfitting. Model regularization is just as important in deep neural networks as it is in
linear models, and perhaps even more so. The regularizers discussed in 2.7.2, namely L2, L1

and the elastic-net, are also relevant for neural networks. In particular, L2 regularization,
also called weight decay is essential for achieving good generalization performance in many
cases, and tuning the regularization strength � is advisable.

Another e↵ective technique for preventing neural networks from overfitting the train-
ing data is dropout training [Hinton, 2014, Hinton et al., 2012]. The dropout method is
designed to prevent the network from learning to rely on specific weights. It works by ran-
domly dropping (setting to 0) half of the neurons in the network (or in a specific layer)
in each training example in the stochastic-gradient training. For example, consider the
multilayer perceptron with two hidden layers (MLP2):
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Neural Network

what is x?



Predicting from words



Neural NLP Building Blocks

• Word Embeddings: translate a word to a vector.


• Ways of combining vectors.



• Consider the columns of W3. 

• Consider the rows of E.

Word Embeddings



Word Embeddings
• Translate each word in the (fixed) vocabulary to a vector.


• Typical dimensions: 100-300


• Translation is done using a lookup table.


• Can be "pre-trained" (word2vec, glove)


• Dealing with "infinite" vocabularies: 


• {characters}, {word pieces, bpe}, {fastText}



Word Embeddings

• {characters}, {word pieces, bpe}, {fastText}

dinosaur = d i n o s a u r

dinosaur = dino #sa #ur

dinosaur = 
dinosa + inosau + nosaur + 

dino + inos + nosa + osau + saur 
+ din + ino + nos + osa + sau + aur   



vbook = E[book]

Lookup 
Table

"book"

vbook

Word Embeddings
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Combining Vectors

Lookup 
Table

I

Lookup 
Table

read

Lookup 
Table

book

Lookup 
Table

about

vI vread va vbook vabout



Lookup 
Table

a

Combining Vectors

Lookup 
Table

I

Lookup 
Table

read

Lookup 
Table

book

Lookup 
Table

about

concatenate

vI vread va vbook vabout

I read a book about
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Combining Vectors

Lookup 
Table

I

Lookup 
Table

read

Lookup 
Table

book

Lookup 
Table

about

sum

+ + + +
vI vread va vbook vabout

I read a book about
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Combining Vectors

Lookup 
Table

I

Lookup 
Table

read

Lookup 
Table

book

Lookup 
Table

about

sum

+ + + +

(or average)

vI vread va vbook vabout

I read a book about



Lookup 
Table
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Combining Vectors

Lookup 
Table

I

Lookup 
Table

read

Lookup 
Table

book

Lookup 
Table

about

sum

+ + + +

(or average)

vI vread va vbook vabout

book a about read I



Combining Vectors
Sum (or average)Concatenate

I read a book about

I read a book

I read a

I read

I read a book about

I read a book

I read a

I read

I book a read about
book about read I a
I a about book read
a read about book I

...

more words = longer vectors order invariant

"cbow"



Linear

x

softmax

y

y0

h
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The Computation Graph



• Computing the gradients: 
• The network (and loss calculation) is a 

mathematical function. 

• Calculus rules apply. 
• (a bit hairy, but carefully follow the chain rule and 

you'll get there)

`(x, k) = �log(softmax(W3g2(W2g1(W1x+ b1)+b2) + b3)[k])

Gradient-based training



The Computation Graph 
(CG)

• a DAG. 

• Leafs are inputs (or parameters). 

• Nodes are operators (functions). 

• Edges are results (values). 

• Can be built for any function.

RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2014) are designed to
select the learning rate for each minibatch, sometimes on a per-coordinate basis, potentially
alleviating the need of fiddling with learning rate scheduling. For details of these algorithms,
see the original papers or (Bengio et al., 2015, Sections 8.3, 8.4). As many neural-network
software frameworks provide implementations of these algorithms, it is easy and sometimes
worthwhile to try out di↵erent variants.

6.2 The Computation Graph Abstraction

While one can compute the gradients of the various parameters of a network by hand and
implement them in code, this procedure is cumbersome and error prone. For most pur-
poses, it is preferable to use automatic tools for gradient computation (Bengio, 2012). The
computation-graph abstraction allows us to easily construct arbitrary networks, evaluate
their predictions for given inputs (forward pass), and compute gradients for their parameters
with respect to arbitrary scalar losses (backward pass).

A computation graph is a representation of an arbitrary mathematical computation as
a graph. It is a directed acyclic graph (DAG) in which nodes correspond to mathematical
operations or (bound) variables and edges correspond to the flow of intermediary values
between the nodes. The graph structure defines the order of the computation in terms of
the dependencies between the di↵erent components. The graph is a DAG and not a tree, as
the result of one operation can be the input of several continuations. Consider for example
a graph for the computation of (a ⇤ b+ 1) ⇤ (a ⇤ b+ 2):

a b1 2

*
++

*

The computation of a⇤b is shared. We restrict ourselves to the case where the computation
graph is connected.

Since a neural network is essentially a mathematical expression, it can be represented
as a computation graph.

For example, Figure 3a presents the computation graph for a 1-layer MLP with a soft-
max output transformation. In our notation, oval nodes represent mathematical operations
or functions, and shaded rectangle nodes represent parameters (bound variables). Network
inputs are treated as constants, and drawn without a surrounding node. Input and param-
eter nodes have no incoming arcs, and output nodes have no outgoing arcs. The output of
each node is a matrix, the dimensionality of which is indicated above the node.

This graph is incomplete: without specifying the inputs, we cannot compute an output.
Figure 3b shows a complete graph for an MLP that takes three words as inputs, and predicts
the distribution over part-of-speech tags for the third word. This graph can be used for
prediction, but not for training, as the output is a vector (not a scalar) and the graph does
not take into account the correct answer or the loss term. Finally, the graph in 3c shows the
computation graph for a specific training example, in which the inputs are the (embeddings
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Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡
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• Create a graph for each 
training example. 

• Once graph is built, we have 
two essential algorithms: 

• Forward:  
compute all values. 

• Backward (backprop): 
compute all gradients.
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Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡
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of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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Computing the Gradients 
(backprop)

• Consider the chain-rule 
(example on blackboard) 

• Each node needs to know 
how to: 

• Compute forward. 

• Compute its local 
gradient.
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Network Training algorithm:

• For each training example 
(or mini-batch): 

• Create graph for computing loss. 

• Compute loss (forward). 

• Compute gradients (backwards). 

• Update model parameters.x
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of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

# model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

# Building the computation graph:
renew_cg() # create a new graph.
# Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

# Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn
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# Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
# and stored in the corresponding
# parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,

5
https://keras.io
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Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡
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the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

# model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

# Building the computation graph:
renew_cg() # create a new graph.
# Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

# Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn
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# Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
# and stored in the corresponding
# parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,

5
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Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

# model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

# Building the computation graph:
renew_cg() # create a new graph.
# Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

# Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn
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# Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
# and stored in the corresponding
# parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,

5
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Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

# model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

# Building the computation graph:
renew_cg() # create a new graph.
# Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

# Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn
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# Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
# and stored in the corresponding
# parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,
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Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

# model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

# Building the computation graph:
renew_cg() # create a new graph.
# Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

# Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn
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# Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
# and stored in the corresponding
# parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,
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Back to Combining Vectors



ConvNets

• "bags of ngrams". 

• Useful!

(we'll probably skip them today)
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(we'll focus on the 1-d view here,
but remember they are equivalent)
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"Pooling"

Combine K vectors into a single vector



"Pooling"

Combine K vectors into a single vector

This vector is a summary of the K vectors,
and can be used for prediction.
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the service was not goodveryactual

+ + + + + =

tanh(W⇤+ b)

U⇤

softmax(⇤)

prediction

MLP

train end-to-end for some task
(train the MLP, the filter matrix, and the embeddings together)
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RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)
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LSTM: differential gates

better controlled memory access



• The main idea behind the LSTM is that you want to 
somehow control the "memory access". 

• In a SimpleRNN:  

• All the memory gets overwritten

RSRNN (si�1,xi) = tanh(Ws · si�1 +Wx · xi)

read previous state memory write new input

LSTM: differential gates



Vector Gates
• We'd like to:  

* Selectively read from some memory "cells".  
* Selectively write to some memory "cells". 

• A gate function: 

•
vector of valuesgate controls access

15.3. GATED ARCHITECTURES 163

and a gate g 2 0, 1d. The computation s0  g � x + (1� g)� (s) “reads” the entries in x
that correspond to the 1 values in g, and writes them to the new memory s0. Then, locations
that weren’t read to are copied from the memory s to the new memory s0 through the use
of the gate (1� g). Figure 15.1 shows this process for updating the memory with positions
2 and 5 from the input:
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Figure 15.1: Using binary gate vector g to control access to memory s0.

The gating mechanism described above can serve as a building block in our RNN: gate
vectors can be used to control access to the memory state si. However, we are still missing
two important (and related) components: the gates should not be static, but be controlled
by the current memory state and the input, and their behavior should be learned. This
introduced an obstacle, as learning in our framework entails being di↵erentiable (because
of the backpropagation algorithm) and the binary 0-1 values used in the gates are not
di↵erentiable.

A solution to the above problem is to approximate the hard gating mechanism with a
soft – but di↵erentiable – gating mechanism. To achieve these di↵erentiable gates, we replace
the requirement that g 2 {0, 1}n and allow arbitrary real numbers, g0 2 Rn, which are then
pass through a sigmoid function �(g0). This bounds the value in the range (0, 1), with
most values near the borders. When using the gate �(g0)� x, indices in x corresponding to
near-one values in �(g0) are allowed to pass, while those corresponding to near-zero values
are blocked. The gate values can then be conditioned on the input and the current memory,
and trained using a gradient-based method to perform a desired behavior.

This is controllable gating mechanism is the basis of the LSTM and the GRU ar-
chitectures, to be defined next: at each time step, di↵erentiable gating mechanisms decide
which parts of the inputs will be written to memory, and which parts of memory will be
overwritten (forgotten). This rather abstract description will be made concrete in the next
sections.

(element-wise multiplication)
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are blocked. The gate values can then be conditioned on the input and the current memory,
and trained using a gradient-based method to perform a desired behavior.

This is controllable gating mechanism is the basis of the LSTM and the GRU ar-
chitectures, to be defined next: at each time step, di↵erentiable gating mechanisms decide
which parts of the inputs will be written to memory, and which parts of memory will be
overwritten (forgotten). This rather abstract description will be made concrete in the next
sections.
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Vector "Gates"
• We'd like to:  

* Selectively read from some memory "cells".  
* Selectively write to some memory "cells". 

• A gate function: 

•

vector of values gate controls access

g 2 {0, 1}dsi�1 � g



si  si�1 � gr + xi � gw

Vector "Gates"

• Using the gate function to control access: 

•

which cells to read which cells to write

g 2 {0, 1}d



si  si�1 � gr + xi � gw

Vector "Gates"

• Using the gate function to control access: 

• (can also tie them:                     )     

g 2 {0, 1}d

gr = 1� gw

which cells to read which cells to write



Vector "Gates"
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and a gate g 2 0, 1d. The computation s0  g � x + (1� g)� (s) “reads” the entries in x
that correspond to the 1 values in g, and writes them to the new memory s0. Then, locations
that weren’t read to are copied from the memory s to the new memory s0 through the use
of the gate (1� g). Figure 15.1 shows this process for updating the memory with positions
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The gating mechanism described above can serve as a building block in our RNN: gate
vectors can be used to control access to the memory state si. However, we are still missing
two important (and related) components: the gates should not be static, but be controlled
by the current memory state and the input, and their behavior should be learned. This
introduced an obstacle, as learning in our framework entails being di↵erentiable (because
of the backpropagation algorithm) and the binary 0-1 values used in the gates are not
di↵erentiable.

A solution to the above problem is to approximate the hard gating mechanism with a
soft – but di↵erentiable – gating mechanism. To achieve these di↵erentiable gates, we replace
the requirement that g 2 {0, 1}n and allow arbitrary real numbers, g0 2 Rn, which are then
pass through a sigmoid function �(g0). This bounds the value in the range (0, 1), with
most values near the borders. When using the gate �(g0)� x, indices in x corresponding to
near-one values in �(g0) are allowed to pass, while those corresponding to near-zero values
are blocked. The gate values can then be conditioned on the input and the current memory,
and trained using a gradient-based method to perform a desired behavior.

This is controllable gating mechanism is the basis of the LSTM and the GRU ar-
chitectures, to be defined next: at each time step, di↵erentiable gating mechanisms decide
which parts of the inputs will be written to memory, and which parts of memory will be
overwritten (forgotten). This rather abstract description will be made concrete in the next
sections.



• Problem with the gates: 
* they are fixed.  
* they don't depend on the input or the output. 

• Solution: make them smooth, input dependent, and 
trainable. 

•

Differentiable "Gates"

"almost 0" 
or 

"almost 1"
function of input and state

gr = �(W · xi +U · si�1)



• Problem with the gates: 
* they are fixed.  
* they don't depend on the input or the output. 

• Solution: make them smooth, input dependent, and 
trainable. 

•

Differentiable "Gates"

"almost 0" 
or 

"almost 1"
function of input and state

gr = �(W · xi +U · si�1)



• The LSTM is a specific combination of gates. 

•

LSTM  
(Long short-term Memory)

RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

OLSTM (sj) = OLSTM ([cj;hj]) = hj
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Transformer

• Main concepts to know: 

• Self-attention 

• Multi-head attention 

• Also think about: why do this? what is the motivation?

replace RNN with attention-based mechanism



Transformer
Self attention

each token attends to all tokens in previous layer
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one attention pattern



Transformer
multi-head attention

another attention pattern



Transformer
multi-head attention

why chose if we can just have several?



Transformer
Skip connections
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Cost vs Opportunity
RNN to Self-attention

drop 
time dependence



Cost vs Opportunity
RNN to Self-attention

add 
attention



Cost vs Opportunity
RNN to Self-attention

can parallelize
across all sequence



Cost vs Opportunity
RNN to Self-attention

can parallelize
across all sequence



Transformer
Information flow

how do we pass information between the blue arrows?



Transformer
Information flow

how do we pass information between the blue arrows?

vs 
RNN case
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Positional information



Transformer
Positional information

"1" "2" "3" "4"
+ + + +



Neural NLP

Input OutputInput Neural Network Output



The basic abstraction

Input Encode Decode OutputInput Encode Decode Output



The basic abstraction

Input Encode Decode Output

Attend

Input Encode Decode Output

Attend



Encoder abstarctions
symbol Encode vector 

n vectors Encode vector

n vectors Encode n vectors

"embeddings"

CNN + pooling
RNN

Sum

RNN (~)
Bi-RNN 

Transformer



Decoders
Linear, MLP (predict)

RNN

(Attention) Transformer

at single vector

at each position

RNN + Attention arbitrary length

one prediction

input length




