

0 to ~80 in 90 minutes

a shallow intro to deep networks

Yoav Goldberg

NLPL Winter School 2020

"I do think that most participants will know the basics about embeddings, neural networks and loss functions (although the depth of their knowledge will vary, of course)." "I do think that **most** participants will know the **basics** about embeddings, neural networks and loss functions (although the depth of their knowledge will vary, of course)."

Neural Networks

functions from vectors to vectors

Neural Networks

functions from vectors to probabilities

(these are still functions from vectors to vectors)

Predicting from a vector

 $predict(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}$

 $p(y = ?|\mathbf{x})$

 $predict(\mathbf{x}) = softmax(\mathbf{W}\mathbf{x} + \mathbf{b})$

$$softmax(\mathbf{x})_{[i]} = \frac{e^{\mathbf{x}_{[i]}}}{\sum_{j} e^{\mathbf{x}_{[j]}}}$$

 $p(y = ?|\mathbf{x})$

$$predict(\mathbf{x}) = softmax(\mathbf{W}\mathbf{x} + \mathbf{b})$$
$$softmax(\mathbf{x})_{[i]} = \frac{e^{\mathbf{x}_{[i]}}}{\sum_{j} e^{\mathbf{x}_{[j]}}}$$

(can still take the argmax, will yield same result)

Predict from a vector (Linear Layer + softmax)

 $p(y = ?|\mathbf{x})$

 $predict(\mathbf{x}) = softmax(\mathbf{W}\mathbf{x} + \mathbf{b})$

$$softmax(\mathbf{x})_{[i]} = \frac{e^{\mathbf{x}_{[i]}}}{\sum_{j} e^{\mathbf{x}_{[j]}}}$$

Training: Learning as optimization

 $\mathbf{x_1},...,\mathbf{x_n}$

 $\mathbf{y_1},...,\mathbf{y_n}$

Desired:

 $f_{ heta}(\mathbf{x})$ "that works well"

$$\mathbf{Y} = \mathbf{y_1}, \dots, \mathbf{y_n}$$
$$\mathbf{\hat{Y}}_{\theta} = f_{\theta}(\mathbf{x_1}), \dots, f_{\theta}(\mathbf{x_n})$$

$$\mathcal{L}(\mathbf{Y}, \mathbf{\hat{Y}}_{ heta})$$

loss function

Training: Learning as optimization

 $\mathbf{x_1},...,\mathbf{x_n}$

 $\mathbf{y_1},...,\mathbf{y_n}$

Desired:

 $f_{ heta}(\mathbf{x})$ "that works well"

n

 $\mathcal{L}(\mathbf{Y}, \mathbf{\hat{Y}}_{\theta}) \propto \sum \ell(\mathbf{y}_{\mathbf{i}}, f_{\theta}(\mathbf{x}_{\mathbf{i}}))$

$$\mathbf{Y} = \mathbf{y}_1, \dots, \mathbf{y}_n$$
$$\hat{\mathbf{Y}}_{\theta} = f_{\theta}(\mathbf{x}_1), \dots, f_{\theta}(\mathbf{x}_n)$$

loss function

i=1 decomposed over items

$$rgmin_{ heta} \mathcal{L}(\mathbf{Y}, \mathbf{\hat{Y}}_{ heta})$$

solved with gradient based methods

Desired:

 $f_{ heta}(\mathbf{x})$ "that works well"

$$\mathbf{Y} = \mathbf{y}_1, ..., \mathbf{y}_n$$
$$\hat{\mathbf{Y}}_{\theta} = f_{\theta}(\mathbf{x}_1), ..., f_{\theta}(\mathbf{x}_n)$$

loss function

i=1 decomposed over items

 $\mathcal{L}(\mathbf{Y}, \mathbf{\hat{Y}}_{\theta}) \propto \sum \ell(\mathbf{y}_{\mathbf{i}}, f_{\theta}(\mathbf{x}_{\mathbf{i}}))$

$$\arg\min_{\theta} \mathcal{L}(\mathbf{Y}, \hat{\mathbf{Y}}_{\theta}) \propto \sum_{i=1}^{n} \ell(\mathbf{y}_{i}, f_{\theta}(\mathbf{x}_{i}))$$

When prediction are "probabilities"

$$\hat{\mathbf{y}}_{[k]} = P(y = k | \mathbf{x})$$

$$\ell_{\text{cross-ent}} = -\sum_{k} \mathbf{y}_{[k]} \log \mathbf{\hat{y}}_{[k]}$$

for "hard" (0 or 1) labels:

$$\ell_{\text{cross-ent}} = -\log \mathbf{\hat{y}}_{[t]}$$

ALLEN INSTITUTE

$$\arg\min_{\theta} \mathcal{L}(\mathbf{Y}, \hat{\mathbf{Y}}_{\theta}) \propto \sum_{i=1}^{n} \ell(\mathbf{y}_{i}, f_{\theta}(\mathbf{x}_{i}))$$

When prediction are "probabilities"

$$\hat{\mathbf{y}}_{[k]} = P(y = k | \mathbf{x})$$

$$\ell_{\text{cross-ent}} = -\sum_{k} \mathbf{y}_{[k]} \log \mathbf{\hat{y}}_{[k]}$$

for "hard" (0 or 1) labels:

$$\ell_{\text{cross-ent}} = -\log \mathbf{\hat{y}}_{[t]}$$

the common ones

Neural Network

Predicting from words

Neural NLP Building Blocks

- Word Embeddings: translate a word to a vector.
- Ways of combining vectors.

toeory ^{as}

Word the Earth arth and bed Control of the State of the S

тJ

10

15

Word Embeddings

- Translate each word in the (fixed) vocabulary to a vector.
 - Typical dimensions: 100-300
 - Translation is done using a lookup table.
 - Can be "pre-trained" (word2vec, glove)
- Dealing with "infinite" vocabularies:
 - {characters}, {word pieces, bpe}, {fastText}

Word Embeddings

Word Embeddings

$$\mathbf{v}_{book} = \mathbf{E}[book]$$

U

Ρ

B I U N L P

Combining Vectors

I book a read about book about read I a I a about book read a read about book I

more words = longer vectors

order invariant

The Computation Graph

Gradient-based training

- Computing the gradients:
 - The network (and loss calculation) is a mathematical function.

 $\ell(x,k) = -log(softmax(\mathbf{W}^3g^2(\mathbf{W}^2g^1(\mathbf{W}^1x + \mathbf{b}^1) + \mathbf{b}^2) + \mathbf{b}^3)[k])$

- Calculus rules apply.
- (a bit hairy, but carefully follow the chain rule and you'll get there)

The Computation Graph (CG)

- a DAG.
- Leafs are inputs (or parameters).
- Nodes are operators (functions).
- Edges are results (values).
- Can be built for any function.

 MLP_1

MLP_1 with concrete input

- Create a graph for each training example.
- Once graph is built, we have two essential algorithms:
 - Forward: compute all values.
 - Backward (backprop): compute all gradients.

Computing the Gradients (backprop)

- Consider the chain-rule (example on blackboard)
- Each node needs to know how to:
 - Compute forward.
 - Compute its local gradient.

Landscape (partial)

B I U N L P N L P Network Training algorithm:

- For each training example (or mini-batch):
 - Create graph for computing loss.
 - Compute loss (forward).
 - Compute gradients (**backwards**).
 - Update model parameters.

DyNet Example 1×1 neg 1×1 log # model initialization. 1×1 model = Model() (c) pick mW1 = model.add_parameters((20,150)) 1×17 mb1 = model.add_parameters(20) softmax $\mathbf{5}$ mW2 = model.add_parameters((17,20)) mb2 = model.add_parameters(17) 1×17 lookup = model.add_lookup_parameters((100, 50)) ADD # Building the computation graph: 1×17 renew_cg() # create a new graph. MUL # Wrap the model parameters as graph-nodes. W1 = parameter(mW1) 1×20 20×17 1×17 \mathbf{W}^2 $\mathbf{b^2}$ tanhb1 = parameter(mb1) W2 = parameter(mW2) 1×20 b2 = parameter(mb2)ADD def get_index(x): return 1 # Generate the embeddings layer. 1×20 = lookup[get_index("the")] vthe MUL vblack = lookup[get_index("black")] = lookup[get_index("dog")] vdoq $1 \times |150$ 150×20 1×20 \mathbf{W}^{1} $\mathbf{b^1}$ concat# Connect the leaf nodes into a complete graph. 1×50 1×50 1×50 x = concatenate([vthe, vblack, vdog]) lookup lookup lookup output = softmax $(W2 \star (tanh (W1 \star x) + b1) + b2)$ loss = -log(pick(output, 5)) $|V| \times 50$ "the" "black" "dog" \mathbf{E} loss value = loss.forward() loss.backward() # the gradient is computed *#* and stored in the corresponding # parameters.

DyNet Example 1×1 neg 1×1 log # model initialization. 1×1 model = Model()(c) pick mW1 = model.add parameters((20,150)) $1 \times 17/$ mb1 = model.add_parameters(20) softmax $\mathbf{5}$ $mW2 = model.add_parameters((17,20))$ mb2 = model.add_parameters(17) 1×17 lookup = model.add_lookup_parameters((100, 50)) ADD # Building the computation graph: 1×17 renew_cg() # create a new graph. MUL # Wrap the model parameters as graph-nodes. W1 = parameter(mW1) 1×20 20×17 1×17 \mathbf{W}^2 $\mathbf{b^2}$ tanhb1 = parameter(mb1)W2 = parameter(mW2) 1×20 b2 = parameter(mb2)ADD def get_index(x): return 1 # Generate the embeddings layer. 1×20 = lookup[get_index("the")] vthe MUL vblack = lookup[get_index("black")] = lookup[get_index("dog")] vdoq $1 \times |150$ 150×20 1×20 \mathbf{W}^{1} $\mathbf{b^1}$ concat# Connect the leaf nodes into a complete graph. 1×50 1×50 1×50 x = concatenate([vthe, vblack, vdog]) lookup lookup lookup output = softmax $(W2 \star (tanh (W1 \star x) + b1) + b2)$ loss = -log(pick(output, 5)) $|V| \times 50$ "the" "black" "dog" \mathbf{E} loss value = loss.forward() loss.backward() # the gradient is computed *#* and stored in the corresponding # parameters.

DyNet Example 1×1 neg 1×1 \log # model initialization. 1×1 model = Model() (c) pick mW1 = model.add parameters((20, 150)) 1×17 mb1 = model.add_parameters(20) softmax $\mathbf{5}$ mW2 = model.add_parameters((17,20)) mb2 = model.add_parameters(17) 1×17 lookup = model.add_lookup_parameters((100, 50)) ADD # Building the computation graph: 1×17 renew_cq() # create a new graph. MUL # Wrap the model parameters as graph-nodes. W1 = parameter(mW1) 1×20 20×17 1×17 \mathbf{W}^2 $\mathbf{b^2}$ tanhb1 = parameter(mb1)W2 = parameter(mW2) 1×20 b2 = parameter(mb2)ADD **def** get_index(x): return 1 # Generate the embeddings layer. 1×20 = lookup[get_index("the")] vthe MUL vblack = lookup[get_index("black")] = lookup[get_index("dog")] vdoq $1 \times |150$ 150×20 1×20 \mathbf{W}^{1} $\mathbf{b^1}$ concat# Connect the leaf nodes into a complete graph. 1×50 1×50 1×50 x = concatenate([vthe, vblack, vdog]) lookup lookup lookup output = softmax $(W2 \star (tanh (W1 \star x) + b1) + b2)$ loss = -log(pick(output, 5)) $|V| \times 50$ "the" "black" "dog" \mathbf{E} loss value = loss.forward() loss.backward() # the gradient is computed # and stored in the corresponding # parameters.

 \mathbf{E}

DyNet Example 1×1 neg 1×1 \log # model initialization. 1×1 model = Model() (c) pick mW1 = model.add parameters((20, 150)) $1 \times 17/$ mb1 = model.add_parameters(20) softmax $\mathbf{5}$ mW2 = model.add_parameters((17,20)) mb2 = model.add_parameters(17) 1×17 lookup = model.add_lookup_parameters((100, 50)) ADD # Building the computation graph: 1×17 renew_cg() # create a new graph. MUL # Wrap the model parameters as graph-nodes. W1 = parameter(mW1) 1×20 20×17 1×17 \mathbf{W}^2 $\mathbf{b^2}$ tanhb1 = parameter(mb1)W2 = parameter(mW2) 1×20 b2 = parameter(mb2)ADD def get_index(x): return 1 # Generate the embeddings layer. 1×20 = lookup[get_index("the")] vthe MUL vblack = lookup[get_index("black")] = lookup[get_index("dog")] vdoq 1×150 150×20 1×20 \mathbf{W}^{1} $\mathbf{b^1}$ concat# Connect the leaf nodes into a complete graph. 1×50 1×50 1×50 x = concatenate([vthe, vblack, vdog]) lookup lookup lookup output = softmax $(W2 \star (tanh (W1 \star x) + b1) + b2)$ loss = -log(pick(output, 5)) $|V| \times 50$ "the" "black" "dog" loss value = loss.forward() loss.backward() # the gradient is computed *#* and stored in the corresponding # parameters.

DyNet Example 1×1 neg 1×1 \log # model initialization. 1×1 model = Model() (c) pick mW1 = model.add_parameters((20,150)) 1×17 mb1 = model.add_parameters(20) softmax $\mathbf{5}$ mW2 = model.add_parameters((17,20)) mb2 = model.add_parameters(17) 1×17 lookup = model.add_lookup_parameters((100, 50)) ADD # Building the computation graph: 1×17 renew_cq() # create a new graph. MUL # Wrap the model parameters as graph-nodes. W1 = parameter(mW1) 1×20 20×17 1×17 \mathbf{W}^2 $\mathbf{b^2}$ tanhb1 = parameter(mb1)W2 = parameter(mW2) 1×20 b2 = parameter(mb2)ADD def get_index(x): return 1 # Generate the embeddings layer. 1×20 = lookup[get_index("the")] vthe MUL vblack = lookup[get_index("black")] = lookup[get_index("dog")] vdoq $1 \times |150$ 150×20 1×20 \mathbf{W}^{1} $\mathbf{b^1}$ concat# Connect the leaf nodes into a complete graph. 1×50 1×50 1×50 x = concatenate([vthe, vblack, vdog]) lookup lookup lookup output = softmax $(W2 \star (tanh (W1 \star x) + b1) + b2)$ loss = -log(pick(output, 5)) $|V| \times 50$ "the" "black" "dog" \mathbf{E} loss value = loss.forward() loss.backward() # the gradient is computed *#* and stored in the corresponding

parameters.

Back to Combining Vectors

ConvNets

- "bags of ngrams".
- Useful!

(we'll probably skip them today)

the actual service was not very good

the actual

B

good the actual service not was very

the actual

11

the actual

dot

the actual service was not very good

(another way to represent text convolutions)

(another way to represent text convolutions)

(another way to represent text convolutions)

(we'll focus on the 1-d view here, but remember they are equivalent)

(usually also add non linearity)

(can have larger filters)

(can have larger filters)

the actual service was not very good

we have the ngram vectors. now what?

the actual service was not very good

can do "pooling"

"Pooling"

Combine K vectors into a single vector

"Pooling"

Combine K vectors into a single vector

This vector is a summary of the K vectors, and can be used for prediction.

average pooling

the actual service was not very good

В

IJ

Ρ

the actual service was not very good

max ----max-

В

IJ

max--- max -

max-

the actual service was not very good

max over each dimension

train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)

RNNs

Recurrent Neural Network: RNN

I read a book about

Combining Vectors

Recurrent Neural Network: RNN

RNN RNN RNN RNN RNN cell cell cell cell cell $\mathbf{v}_{a\dagger}$ \mathbf{v}_{I} \mathbf{v}_{read} \mathbf{v}_{book} **V***about*↑ ♠ Lookup Lookup Lookup Lookup Lookup **Table** Table **Table Table** Table read book about а

Combining Vectors \mathbf{S}_1 $\mathbf{s_i} = RNN(\mathbf{s_{i-1}}, \mathbf{x_i})$ **RNN** cell $\overline{\mathbf{S}}_{0}$ $\mathbf{v}_{a\dagger}$ \mathbf{v}_{read} \mathbf{v}_{I} V_{book} ↑ **V***about*↑ ┫ Lookup Lookup Lookup Lookup Lookup **Table** Table **Table Table** Table read book about а

¹ Combining Vectors

Recurrent Neural Network: RNN

 $\mathbf{s_i} = RNN(\mathbf{s_{i-1}}, \mathbf{x_i})$

Recurrent Neural Network: RNN

$$R_{SRNN}(\mathbf{s_{i-1}}, \mathbf{x_i}) = tanh(\mathbf{W^s} \cdot \mathbf{s_{i-1}} + \mathbf{W^x} \cdot \mathbf{x_i})$$

Recurrent Neural Network: RNN

$$\begin{aligned} R_{LSTM}(\mathbf{s_{j-1}}, \mathbf{x_j}) = & [\mathbf{c_j}; \mathbf{h_j}] \\ \mathbf{c_j} = & \mathbf{c_{j-1}} \odot \mathbf{f} + \mathbf{g} \odot \mathbf{i} \\ \mathbf{h_j} = & \tanh(\mathbf{c_j}) \odot \mathbf{o} \\ & \mathbf{i} = & \sigma(\mathbf{W^{xi}} \cdot \mathbf{x_j} + \mathbf{W^{hi}} \cdot \mathbf{h_{j-1}}) \\ & \mathbf{f} = & \sigma(\mathbf{W^{xf}} \cdot \mathbf{x_j} + \mathbf{W^{hf}} \cdot \mathbf{h_{j-1}}) \\ & \mathbf{o} = & \sigma(\mathbf{W^{xo}} \cdot \mathbf{x_j} + \mathbf{W^{ho}} \cdot \mathbf{h_{j-1}}) \\ & \mathbf{g} = & \tanh(\mathbf{W^{xg}} \cdot \mathbf{x_j} + \mathbf{W^{hg}} \cdot \mathbf{h_{j-1}}) \end{aligned}$$

LSTM: differential gates

$$R_{LSTM}(\mathbf{s_{j-1}}, \mathbf{x_j}) = [\mathbf{c_j}; \mathbf{h_j}]$$

$$\mathbf{c_j} = \mathbf{c_{j-1}} \odot \mathbf{f} + \mathbf{g} \odot \mathbf{i}$$

$$\mathbf{h_j} = \tanh(\mathbf{c_j}) \odot \mathbf{o}$$

$$\mathbf{i} = \sigma(\mathbf{W^{xi}} \cdot \mathbf{x_j} + \mathbf{W^{hi}} \cdot \mathbf{h_{j-1}})$$

$$\mathbf{f} = \sigma(\mathbf{W^{xf}} \cdot \mathbf{x_j} + \mathbf{W^{hf}} \cdot \mathbf{h_{j-1}})$$

$$\mathbf{o} = \sigma(\mathbf{W^{xo}} \cdot \mathbf{x_j} + \mathbf{W^{ho}} \cdot \mathbf{h_{j-1}})$$

$$\mathbf{g} = \tanh(\mathbf{W^{xg}} \cdot \mathbf{x_j} + \mathbf{W^{hg}} \cdot \mathbf{h_{j-1}})$$

better controlled memory access

LSTM: differential gates

- The main idea behind the LSTM is that you want to somehow control the "memory access".
- In a SimpleRNN:

$$R_{SRNN}(\mathbf{s_{i-1}}, \mathbf{x_i}) = tanh(\mathbf{W^s} \cdot \mathbf{s_{i-1}} + \mathbf{W^x} \cdot \mathbf{x_i})$$

read previous state memory write new input

• All the memory gets overwritten

- We'd like to:
 - * Selectively read from some memory "cells".
 - * Selectively write to some memory "cells".

- We'd like to:
 - * Selectively read from some memory "cells".
 - * Selectively write to some memory "cells".

- We'd like to:
 - * Selectively read from some memory "cells".
 - * Selectively write to some memory "cells".
- A gate function:

• Using the gate function to control access:

• Using the gate function to control access:

• (can also tie them: $\mathbf{g}^{\mathbf{r}} = 1 - \mathbf{g}^{\mathbf{w}}$)

Differentiable "Gates"

Problem with the gates:

- * they are fixed.
- * they don't depend on the input or the output.

Differentiable "Gates"

Problem with the gates:

- * they are fixed.* they don't depend on the input or the output.
- Solution: make them smooth, input dependent, and trainable.

LSTM (Long short-term Memory)

• The LSTM is a specific combination of gates.

$$R_{LSTM}(\mathbf{s_{j-1}}, \mathbf{x_j}) = [\mathbf{c_j}; \mathbf{h_j}]$$

$$\mathbf{c_j} = \mathbf{c_{j-1}} \odot \mathbf{f} + \mathbf{g} \odot \mathbf{i}$$

$$\mathbf{h_j} = \tanh(\mathbf{c_j}) \odot \mathbf{o}$$

$$\mathbf{i} = \sigma(\mathbf{W^{xi}} \cdot \mathbf{x_j} + \mathbf{W^{hi}} \cdot \mathbf{h_{j-1}})$$

$$\mathbf{f} = \sigma(\mathbf{W^{xf}} \cdot \mathbf{x_j} + \mathbf{W^{hf}} \cdot \mathbf{h_{j-1}})$$

$$\mathbf{o} = \sigma(\mathbf{W^{xo}} \cdot \mathbf{x_j} + \mathbf{W^{ho}} \cdot \mathbf{h_{j-1}})$$

$$\mathbf{g} = \tanh(\mathbf{W^{xg}} \cdot \mathbf{x_j} + \mathbf{W^{hg}} \cdot \mathbf{h_{j-1}})$$

$$O_{LSTM}(\mathbf{s_j}) = O_{LSTM}([\mathbf{c_j}; \mathbf{h_j}]) = \mathbf{h_j}$$

Recurrent Neural Network: RNN

$$\begin{aligned} R_{LSTM}(\mathbf{s_{j-1}}, \mathbf{x_j}) = & [\mathbf{c_j}; \mathbf{h_j}] \\ \mathbf{c_j} = & \mathbf{c_{j-1}} \odot \mathbf{f} + \mathbf{g} \odot \mathbf{i} \\ \mathbf{h_j} = & \tanh(\mathbf{c_j}) \odot \mathbf{o} \\ & \mathbf{i} = & \sigma(\mathbf{W^{xi}} \cdot \mathbf{x_j} + \mathbf{W^{hi}} \cdot \mathbf{h_{j-1}}) \\ & \mathbf{f} = & \sigma(\mathbf{W^{xf}} \cdot \mathbf{x_j} + \mathbf{W^{hf}} \cdot \mathbf{h_{j-1}}) \\ & \mathbf{o} = & \sigma(\mathbf{W^{xo}} \cdot \mathbf{x_j} + \mathbf{W^{ho}} \cdot \mathbf{h_{j-1}}) \\ & \mathbf{g} = & \tanh(\mathbf{W^{xg}} \cdot \mathbf{x_j} + \mathbf{W^{hg}} \cdot \mathbf{h_{j-1}}) \end{aligned}$$

Combining Vectors

Recurrent Neural Network: RNN

Combining Vectors

multi-layer RNN

keep intermediate vectors

Bi-RNN

a representation of a word in context.

Generation

Generation

Generation

Text

Leyó el libro en cama

Seq2Seq

Seq2Seq + Attention

keep intermediate vectors

Seq2Seq + Attention

as **Bi-RNN**

weighted sum

weighted sum

weighted sum

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez^{*}[†] University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin*[‡] illia.polosukhin@gmail.com

replace RNN with attention-based mechanism

- Main concepts to know:
 - Self-attention
 - Multi-head attention
- Also think about: why do this? what is the motivation?

Self attention

each token attends to all tokens in previous layer

Self attention

Self attention

multi-head attention

one attention pattern

multi-head attention

another attention pattern

_

Transformer

multi-head attention

why chose if we can just have several?

Skip connections

.

Cost vs Opportunity

 Consider a standard d layer RNN from Lecture 13 with k hidden units, training on a sequence of length t.

- There are k^2 connections for each hidden-to-hidden connection. A total of $t \times k^2 \times d$ connections.
- We need to store all $t \times k \times d$ hidden units during training.
- Only $k \times d$ hidden units need to be stored at test time.

Cost vs Opportunitv

 Consider a standard d layer RNN from Lecture 13 with k hidden units, training on a sequence of length t.

• Which hidden layers can be computed in parallel in this RNN?

Cost vs Opportunitv

 Consider a standard d layer RNN from Lecture 13 with k hidden units, training on a sequence of length t.

• Which hidden layers can be computed in parallel in this RNN?

Cost vs Opportunity

 Consider a standard d layer RNN from Lecture 13 with k hidden units, training on a sequence of length t.

- Both the input embeddings and the outputs of an RNN can be computed in parallel.
- The blue hidden units are independent given the red.
- The numer of sequential operation is still propotional to t.

Information flow

. . .

word 4

Transformer VS **RNN** case Information flow how do we pass information between the blue arrows? hiddens 1 hiddens 2 hiddens 3 hiddens 4 hiddens 2 hiddens 1 hiddens 3 hiddens 4 hiddens 1 hiddens 2 hiddens 3 hiddens 4

word 3

word 1

word 2

Positional information

Positional information

Neural NLP

Decoders

RNN

RNN + Attention

(Attention) Transformer

arbitrary length

