Expression levels of the thyrotropin receptor gene in autoimmune thyroid disease: coregulation with parameters of thyroid function and inverse relation to major histocompatibility complex classes I and II. Using a human TSH receptor (TSH-R) cDNA probe, we investigated TSH-R transcript levels in 13 human thyroid fragments by Northern blot analysis; 7 Graves' disease, 2 Hashimoto's disease, 3 endemic goiter, and 1 healthy thyroid gland were studied. TSH-R expression levels were variable, but displayed a close correlation to the expression of thyroid peroxidase (r = 0.703; P < 0.05), thyroglobulin (r = 0.817; P < 0.01), and the nuclear oncogene c-fos (r = 0.935; P < 0.001), but not c-myc. Overall, TSH-R transcript levels were low or absent in those thyroids in which expression of the major histocompatibility complex class I or II (MHC I or II) was high, thus establishing an inverse relation (MHC I, r = -0.791; P < 0.01; MHC II, r = -0.784; P < 0.01). In situ hybridization showed that apart from lymphocytes, thyroid cells themselves were the source of MHC II transcripts. gamma-Interferon expression was only detectable in 1 Hashimoto's goiter. Our findings suggest that next to lymphocyte infiltration, active regulatory events in the thyrocyte are responsible for the inverse relation between functional parameters (TSH-R, thyroid peroxidase, thyroglobulin, and c-fos) and immunological markers (MHC I and II).