
Unification-Based
Grammar Engineering

Dan Flickinger
Stanford University & Redbird Advanced Learning

danf@stanford.edu

Stephan Oepen
Oslo University
oe@ifi.uio.no

ESSLLI 2016; August 15–19, 2016

Recognizing the Language of a Grammar 〈C,Σ, P, S〉

P :

'

&

$

%

S→ NP VP
VP→ V NP
VP→ VP PP
NP→ NP PP
PP→ P NP
NP→ kim | sushi | chopsticks
V→ snores | eats
P→ with

All Complete Derivations
• are rooted in the start symbol S;

• label internal nodes with cate-
gories ∈ C, leafs with words ∈ Σ;

• instantiate a grammar rule ∈ P at
each local subtree of depth one.

S

NP

kim

VP

VP

V

eats

NP

sushi

PP

P

with

NP

chopsticks

S

NP

kim

VP

V

eats

NP

NP

sushi

PP

P

with

NP

chopsticks

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (2)

Limitations of Context-Free Grammar

Agreement and Valency (For Example)

That dog barks.
∗That dogs barks.
∗Those dogs barks.

The dog chased a cat.
∗The dog barked a cat.
∗The dog chased.

∗The dog chased a cat my neighbors.
The cat was chased by a dog.
∗The cat was chased of a dog.

...

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (3)

Structured Categories in a Unification Grammar

• All (constituent) categories in the grammar are typed feature structures;

• specific TFS configurations may correspond to ‘traditional’ categories;

• labels like ‘S’ or ‘NP’ are mere abbreviations, not elements of the theory.

word



HEAD noun
SPR

〈HEAD det
〉

COMPS 〈〉


phrase


HEAD verb
SPR 〈〉
COMPS 〈〉


phrase



HEAD verb
SPR

〈HEAD noun
〉

COMPS 〈〉



‘N’ ‘S’ ‘VP’

‘lexical’ ‘maximal’ ‘intermediate’

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (4)

Interaction of Lexicon and Phrase Structure Schemata

phrase


HEAD 1
SPR 〈〉
COMPS 3


−→ 2

phrase


SPR 〈〉
COMPS 〈〉

,
phrase


HEAD 1
SPR 〈 2 〉
COMPS 3



phrase



ORTH “the dog”
HEAD

noun

AGR 3sg


SPR 〈〉
COMPS 〈〉



phrase



ORTH “barks”
HEAD

verb

AGR 1 3sg


SPR
〈


HEAD
noun

AGR 1


SPR 〈〉
COMPS 〈〉



〉

COMPS 〈〉



ABabcdfghiejkl esslli — -aug-

Grammar Engineering (5)

The Type Hierarchy: Fundamentals

• Types ‘represent’ groups of entities with similar properties (‘classes’);

• types ordered by specificity: subtypes inherit properties of (all) parents;

• type hierarchy determines which types are compatible (and which not).

top

string feat-struc*list*

expression pos

noun verb det

ne-list *null*

phrase

root

word

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (6)

Multiple Inheritance

• flyer and swimmer no common descendants: they are incompatible;

• flyer and bee stand in hierarchical relationship: they unify to subtype;

• flyer and invertebrate have a unique greatest common descendant.

top

animal

swimmer invertebrateflyer vertebrate

bee fish

cod guppy

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (7)

Typed Feature Structure Subsumption

• Typed feature structures can be partially ordered by information content;

• a more general structure is said to subsume a more specific one;

•
top

  is the most general feature structure (while ⊥ is inconsistent);

• v (‘square subset or equal’) conventionally used to depict subsumption.

Feature structure F subsumes feature structure G (F v G) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of p in F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (8)

Feature Structure Subsumption: Examples

TFS1:
a


FOO x
BAR x

 TFS2:
a


FOO x
BAR y



TFS3:

b


FOO y
BAR x
BAZ x


TFS4:

a


FOO 1 x
BAR 1



Signature

top

a

b

x

y

Feature structure F subsumes feature structure G (F v G) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of p in F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (9)

Typed Feature Structure Unification

• Decide whether two typed feature structures are mutually compatible;

• determine combination of two TFSs to give the most general feature
structure which retains all information which they individually contain;

• if there is no such feature structure, unification fails (depicted as ⊥);

• unification monotonically combines information from both ‘input’ TFSs;

• relation to subsumption the unification of two structures F and G is
the most general TFS which is subsumed by both F and G (if it exists).

• u (‘square set intersection’) conventionally used to depict unification.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (10)

Typed Feature Structure Unification: Examples

TFS1:
a


FOO x
BAR x

 TFS2:
a


FOO x
BAR y



TFS3:

b


FOO y
BAR x
BAZ x


TFS4:

a


FOO 1 x
BAR 1



Signature

top

a

b

x

y

TFS1 u TFS2 ≡ TFS2 TFS1 u TFS3 ≡ TFS3 TFS3 u TFS4 ≡

b


FOO 1 y
BAR 1
BAZ x



ABabcdfghiejkl esslli — -aug-

Grammar Engineering (11)

Notational Conventions

• lists not available as built-in data type; abbreviatory notation in TDL:

< a, b > ≡ [FIRST a, REST [FIRST b, REST *null*]]

• underspecified (variable-length) list:

< a ... > ≡ [FIRST a, REST *list*]

• difference (open-ended) lists; allow concatenation by unification:

<! a !> ≡ [LIST [FIRST a, REST #tail], LAST #tail]

• built-in and ‘non-linguistic’ types pre- and suffixed by asterisk (*top*);

• strings (e.g. “chased”) need no declaration; always subtypes of *string* ;

• strings cannot have subtypes and are (thus) mutually incompatible.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (12)

